
US 20060004667A1

(12) Patent Application Publication (10) Pub. No.: US 2006/0004667 A1
(19) United States

Neil (43) Pub. Date: Jan. 5, 2006

(54) SYSTEMS AND METHODS FOR
COLLECTING OPERATING SYSTEM
LICENSE REVENUE USING AN EMULATED
COMPUTING ENVIRONMENT

(75) Inventor: Mike Neil, Issaquah, WA (US)

Correspondence Address:
WOODCOCK WASHBURN LLP
(MICROSOFT CORPORATION)
ONE LIBERTY PLACE - 46TH FLOOR

PHILADELPHIA, PA 19103 (US)

(73) Assignee: Microsoft Corporation, Redmond, WA

(21) Appl. No.: 10/882,827

(52) US. Cl. 705/59

(57) ABSTRACT

Several embodiments of the present invention provide
means for collecting license revenue for operating systems
or applications softWare that resides in a virtualiZed com
puter system. Certain of these embodiments are speci?cally
directed to providing a means for collecting license revenue
for modern or legacy operating systems or applications in a
virtual machine environment and further provide an ongoing
revenue stream, rather than a one-time transaction, for a
softWare manufacturer. More speci?cally, certain embodi
ments are directed to a system for and method of providing
softWare license enforcement by using a license manager in
a virtual machine environment and thereby provide

(22) Filed. Jun_ 30, 2004 improved methods of collecting license revenue in a com
puter system that supports legacy operating systems and

Publication Classi?cation applications. Finally, several embodiments of the present
invention are directed to providing incremental softWare

(51) Int, Cl, support and upgrades for operating systems and applications
G06F 17/60 (200601) that run in a virtual machine environment.

1 16 1 1 8 120

\ App'A1 \ App A2 App B1
M M II

1 12 " l’ " 1 14
122 \ Guest 03 A \ 124 \ Guest OS B -/

“ License License A‘

, Card A Card B l
108 ‘ A‘ " 1 10

Al

Virtual Machine A = Virtual Machine B J

“ 126 I

104, v \ v " 104H
- - . Host 0 eratin Virtual Machine Monitor License Manager sysgem 9 J

A A

‘7 w

\ Computer Hardware

Patent Application Publication Jan. 5, 2006 Sheet 2 0f 7 US 2006/0004667 A1

00?

N .5 2 362203 052651 96 E236 @5530 who: : E?moi 5:22am : 9 209202 QmBEwI 62.0 : Ewuwthw 95930 “3:0 P5262394 9:25am

Patent Application Publication Jan. 5, 2006 Sheet 3 0f 7 US 2006/0004667 A1

@8266: .ESQEQO

J New

Emugw @5930 “we: J

#2.

m 2282 625. J < 2.282 62.5 J

o: wow

m m0 626 J .4. m0 626 J

v: N:

Patent Application Publication Jan. 5, 2006 Sheet 4 0f 7 US 2006/0004667 A1

-VOF

mm .mm QmBEmI BEQEQO

Eougw @5930 60:

6:82 828: 52>

m 220% 52> J

o C

m mo ago

J v:

E &<

J 08

Patent Application Publication Jan. 5, 2006 Sheet 5 0f 7 US 2006/0004667 A1

w .5 2956: $5950
E9w>w 69222 3:83 \ @5930 “we: > : . ./

Q2 i . J

i mm?

m 05532 _m:E> §\ = =

: v m Emu < EmO i = 3:83 owcwo_._ A wO: // f

\ m wow 0 .QNF N9

w:

om?

/ Now

“OH-:22 055092 _m:t_> j
: .vOP

v < 0520-22 _m:t-> /

.7 wow

4

< wO “mm-‘1U ./
t : NP?

“ ‘ an an
2 < j _.< < J

m I‘ w :

Patent Application Publication Jan. 5, 2006 Sheet 6 0f 7 US 2006/0004667 A1

umEwEQoma w. 3283 wzm=m>< *0 #500 a

mm?

kmmmcm? @2603 9: E0: 5x 3:33 $2381 255 %

v2.

Ewo 3503 m5 wQEEwE @5582 E35 9: F0 E2m>w 95930 $25

mm?

855 220% 52>

on?

Patent Application Publication Jan. 5, 2006 Sheet 7 0f 7 US 2006/0004667 A1

2282 _§E>
\ 2a: 5.62 2282 EELS

mm: w .5

@3524 265 mm;

we
V

9896 9 8222 w. 2.65 52>

02

mm;

mm?

+ 855 gm mo #85

mm? 1 mm?

» 3:83 23:51 EEQmsO

US 2006/0004667 A1

SYSTEMS AND METHODS FOR COLLECTING
OPERATING SYSTEM LICENSE REVENUE USING
AN EMULATED COMPUTING ENVIRONMENT

CROSS-REFERENCE

[0001] This application is related by subject matter to the
invention disclosed in the following commonly assigned
application: US. patent application Ser. No. 10/274,298
(Atty. Docket No. MSFT-2564/304108.01), ?led on Oct. 18,
2002 and entitled, “SOFTWARE LICENSE ENFORCE
MENT MECHANISM FOR AN EMULATED COMPUT
ING ENVIRONMENT,” the entirety of said patent applica
tions being hereby incorporated herein by reference.

FIELD OF THE INVENTION

[0002] The present invention generally relates to the ?eld
virtual machines (also knoWn as “processor virtualiZation”)
and softWare that executes in a virtual machine environment.
More speci?cally, the present invention is directly related to
a method for collecting operating system license revenue
using a virtual machine environment.

BACKGROUND OF THE INVENTION

[0003] Computers include general purpose central pro
cessing units (CPUs) that are designed to execute a speci?c
set of system instructions. A group of processors that have
similar architecture or design speci?cations may be consid
ered to be members of the same processor family. Examples
of current processor families include the Motorola 680><0
processor family, manufactured by Motorola, Inc. of Phoe
nix, AriZ.; the Intel 80x86 processor family, manufactured
by Intel Corporation of Sunnyvale, Calif.; and the PoWerPC
processor family, Which is manufactured by Motorola, Inc.
and used in computers manufactured by Apple Computer,
Inc. of Cupertino, Calif. Although a group of processors may
be in the same family because of their similar architecture
and design considerations, processors may vary Widely
Within a family according to their clock speed and other
performance parameters.

[0004] Each family of microprocessors executes instruc
tions that are unique to the processor family. The collective
set of instructions that a processor or family of processors
can execute is knoWn as the processor’s instruction set. As
an example, the instruction set used by the Intel 80x86
processor family is incompatible With the instruction set
used by the PoWerPC processor family. The Intel 80x86
instruction set is based on the Complex Instruction Set
Computer (CISC) format. The Motorola PoWerPC instruc
tion set is based on the Reduced Instruction Set Computer
(RISC) format. CISC processors use a large number of
instructions, some of Which can perform rather complicated
functions, but Which require generally many clock cycles to
execute. RISC processors use a smaller number of available
instructions to perform a simpler set of functions that are
executed at a much higher rate.

[0005] The uniqueness of the processor family among
computer systems also typically results in incompatibility
among the other elements of hardWare architecture of the
computer systems. A computer system manufactured With a
processor from the Intel 80x86 processor family Will have a
hardWare architecture that is different from the hardWare
architecture of a computer system manufactured With a

Jan. 5, 2006

processor from the PoWerPC processor family. Because of
the uniqueness of the processor instruction set and a com
puter system’s hardWare architecture, application softWare
programs are typically Written to run on a particular com
puter system running a particular operating system.

[0006] Computer manufacturers Want to maximiZe their
market share by having more rather than feWer applications
run on the microprocessor family associated With the com
puter manufacturers’ product line. To expand the number of
operating systems and application programs that can run on
a computer system, a ?eld of technology has developed in
Which a given computer having one type of CPU, called a
host, Will include an emulator program that alloWs the host
computer to emulate the instructions of an unrelated type of
CPU, called a guest. Thus, the host computer Will execute an
application that Will cause one or more host instructions to
be called in response to a given guest instruction. Thus the
host computer can both run softWare design for its oWn
hardWare architecture and softWare Written for computers
having an unrelated hardWare architecture. As a more spe
ci?c example, a computer system manufactured by Apple
Computer, for example, may run operating systems and
program Written for PC-based computer systems. It may also
be possible to use an emulator program to operate concur
rently on a single CPU multiple incompatible operating
systems. In this arrangement, although each operating sys
tem is incompatible With the other, an emulator program can
host one of the tWo operating systems, alloWing the other
Wise incompatible operating systems to run concurrently on
the same computer system.

[0007] When a guest computer system is emulated on a
host computer system, the guest computer system is said to
be a “virtual machine” as the guest computer system only
exists in the host computer system as a pure softWare
representation of the operation of one speci?c hardWare
architecture. The terms emulator, virtual machine, and pro
cessor emulation are sometimes used interchangeably to
denote the ability to mimic or emulate the hardWare archi
tecture of an entire computer system. As an example, the
Virtual PC softWare created by Connectix Corporation of
San Mateo, Calif., emulates an entire computer that includes
an Intel 80x86 Pentium processor and various motherboard
components and cards. The operation of these components is
emulated in the virtual machine that is being run on the host
machine. An emulator program executing on the operating
system softWare and hardWare architecture of the host
computer, such as a computer system having a PoWerPC
processor, mimics the operation of the entire guest computer
system.

[0008] The emulator program acts as the interchange
betWeen the hardWare architecture of the host machine and
the instructions transmitted by the softWare running Within
the emulated environment. This emulator program may be a
host operating system (HOS), Which is an operating system
running directly on the physical computer hardWare. Alter
nately, the emulated environment might also be a virtual
machine monitor (VWM) Which is a softWare layer that runs
directly above the hardWare and Which virtualiZes all the
resources of the machine by exposing interfaces that are the
same as the hardWare the VMM is virtualiZing (Which
enables the VMM to go unnoticed by operating system
layers running above it). A host operating system and a
VMM may run side-by-side on the same physical hardWare.

US 2006/0004667 A1

[0009] Multiple virtual machines can be established on a
single host machine. In this scenario, a host machine of a
certain processor family may host several virtual machines
of the same processor family. In this computing environ
ment, each virtual machine operates as its oWn stand-alone
computer system, Which alloWs a user to install separate
operating systems or multiple instances of a single operating
system on one or more of the virtual machines. Because each
virtual machine is independent of all other virtual machines
and the host machine, softWare running Within one virtual
machine has no effect on the operation of any other virtual
machines or the underlying host machine. Therefore, an
emulated computing environment can support a number of
operating systems, including an array of related operating
systems or multiple, concurrent instances of the same oper
ating system, on a single host computer system.

[0010] In this emulated computing environment, a user
may run multiple virtualiZed computer systems on a single,
physical computer system, Which eliminates the need for
multiple. hardWare systems to support multiple computer
systems. As an alternative to purchasing and con?guring an
additional physical computer system, an additional virtual
machine may be established on an existing computer sys
tem. Running multiple, independent virtual machines on a
single, physical host machine provides, among other ben
e?ts, the ability to test softWare applications across multiple
computing environments and support legacy softWare appli
cations or operating systems. Running multiple virtual
machines on a single host machine also results in a cost
savings, in that the number of physical machines and their
corresponding maintenance costs are reduced. Running mul
tiple virtual machines on a single host machine also provides
the bene?t of operating system and application softWare
isolation.

[0011] In addition, customers often Wish to continue the
use of legacy softWare technology, for example, because
they have a business-critical system or some application that
must remain on a legacy operating system because it Was
never upgraded to any modern operating system. Example
legacy operating systems include MS-DOSTM, WindoWs
3.XTTM, Windows 95”‘, Windows 98”‘, WindoWs MeTM,
WindoWs NTTM, and WindoWs ZOOOTM. Typically softWare
manufacturers Will “end-of-life” a product at some point in
time, meaning that no further support is provided for these
operating systems. For example, a softWare support cycle
may be seven years, While the customer may need to run a

particular operating system for ?fteen years. Furthermore,
these operating systems are typically purchased With a
perpetual license, but in the event that additional capacity is
needed, extending or acquiring additional licenses for an
“end-of-life” product becomes problematic. Alternatively,
these customers may chose to run this legacy softWare
illegally, as there is no mechanism to purchase a legacy
operating system. It Would be bene?cial to be able to enforce
license agreements for legacy operating systems and legacy
softWare applications in order to alloW the customer to have
assurance that he/she is legal in his/her use to avoid any
possible penalties associated With operating illegally. What
is needed is a softWare licensing mechanism for extending
and/or acquiring a softWare license for legacy operating
systems or applications, and to do so legally.

[0012] Moreover, softWare manufacturers do not generally
provide ongoing support of legacy operating systems

Jan. 5, 2006

because, in order to do so, they must maintain, for example,
a variety of WindoWs 95-era PCs in order to support all the
con?gurations of WindoWs 95, Which is not practical as the
costs of providing such support far outpace the revenue to be
generated from proving such support. HoWever, one solution
to this problem is for softWare manufacturers to use virtual
machine environments to virtually replicate almost any
con?guration of hardWare devices in a computing device
Without physically requiring every con?guration of the
computer. In this Way, a single virtual machine environment
provides a cost-effective Way of supporting legacy operating
systems, providing a neW business opportunity for softWare
manufacturers. With this added support, consumer interest in
legacy softWare systems Will also increase, particular for
consumers looking to add a legacy system as a virtual
machine on their modern systems, thus leading to additional
sales opportunities. Therefore, What is needed is a softWare
licensing mechanism, particularly Within a virtual machine
environment, for extending softWare licenses and maintain
ing support for legacy operating systems or applications.

[0013] The licensing of softWare technology is a main
source of revenue for softWare manufacturers. In particular,
a large portion of this business is the licensing of operating
system softWare. The current scheme for the licensing of
operating system softWare, hoWever, is based on physical
hardWare (that is, licenses are made on a per hardWare basis)
Which is an archic model that assumes that each physical
computer system Will include only a single operating sys
tem. However, this licensing scheme (the per hardware
approach) and the existing softWare mechanisms for enforc
ing this licensing scheme do not ?t the circumstance in
Which multiple, concurrent operating systems may exist as
part of multiple virtual machines that operate on a single,
physical host machine. Therefore, What is needed is a
licensing scheme and softWare mechanism for enforcing the
licensing of multiple, concurrent operating systems that
exist as part of multiple virtual machines that operate on a
single, physical host machine.

[0014] In addition, a cash ?oW problem for softWare
developers exists, hoWever, in current mechanisms for
licensing operating systems. In the case of a personal
computer (PC), for example, a license is purchased in a
one-time transaction When the PC is purchased, and the
license usually covers use of the softWare product for a
single computer system (i.e., the license is on a per-hardWare
basis). As a result, license revenue is collected just once
every feW years When a user upgrades to a neW computer
and neW operating system. What is needed is a softWare
licensing model for use in a virtual machine environment
that alloWs the softWare manufacturer to achieve an ongoing
licensing revenue stream and also alloWs the customer to
receive incremental value, such as softWare upgrades and
support, in a cost-effective, practical Way.

SUMMARY OF THE INVENTION

[0015] Several embodiments of the present invention pro
vide a means for collecting license revenue for operating
systems or applications softWare that is resident in an
emulated computer system. (As used herein, the term “emu
lated computer system” refers to all virtualiZed computer
systems, including but not limited to system that, in opera
tion, both emulate and/or directly execute guest operating
system instructions.) Certain of these embodiments are

US 2006/0004667 A1

speci?cally directed to providing a means for collecting
license revenue for legacy operating systems or applications
in a virtual machine environment in a manner the provides
an ongoing revenue stream, rather than a one-time transac
tion, for a softWare manufacturer.

[0016] Certain embodiments of the present invention are
directed to a system for and method of providing softWare
license enforcement by using a license manager in a virtual
machine environment and thereby provide improved meth
ods of collecting license revenue in a computer system that
supports legacy operating systems and applications. Addi
tionally, certain embodiments use emulated peripheral
devices, including a license card, for communicating With
the license manager to request a license key. The function of
the license manager is to monitor and enforce the softWare
license restrictions on the operating system softWare used in
the virtual machines. For some of these embodiments, the
license manager functionality may resides in the host OS or
a VMM of a computer system and be performed on a
hardWare system by hardWare system basis; alternatively,
the license manager functionality may reside on a separate
physical machine that serves as a centraliZed repository of
all available licenses and thereby provides a means of
managing licenses across an enterprise-level con?guration
by supplying licenses to VMMs on physical systems across
an organiZation. Finally, several embodiments of the present
invention are directed to providing incremental softWare
support and upgrades for operating systems and applications
that run in a virtual machine environment.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] The foregoing summary, as Well as the folloWing
detailed description of preferred embodiments, is better
understood When read in conjunction With the appended
draWings. For the purpose of illustrating the invention, there
is shoWn in the draWings exemplary constructions of the
invention; hoWever, the invention is not limited to the
speci?c methods and instrumentalities disclosed. In the
draWings:

[0018] FIG. 1 is a block diagram representing a computer
system in Which aspects of the present invention may be
incorporated;

[0019] FIG. 2 illustrates the logical layering of the hard
Ware and softWare architecture for an emulated operating
environment in a computer system;

[0020] FIG. 3A illustrates a virtualiZed computing sys
tem;

[0021] FIG. 3B illustrates an alternative embodiment of a
virtualiZed computing system comprising a virtual machine
monitor running alongside a host operating system;

[0022] FIG. 4 is a diagram of the logical layers of the
hardWare and softWare architecture of a computer system
that includes a license card and a license manager;

[0023] FIG. 5 is a How diagram of the steps for initiating
and licensing the operating system softWare of a virtual
machine; and

[0024] FIG. 6 is a How diagram of the steps for collecting
operating system license revenue using a virtual machine
environment.

Jan. 5, 2006

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

[0025] The inventive subject matter is described With
speci?city to meet statutory requirements. HoWever, the
description itself is not intended to limit the scope of this
patent. Rather, the inventor has contemplated that the
claimed subject matter might also be embodied in other
Ways, to include different steps or combinations of steps
similar to the ones described in this document, in conjunc
tion With other present or future technologies. Moreover,
although the term “step” may be used herein to connote
different elements of methods employed, the term should not
be interpreted as implying any particular order among or
betWeen various steps herein disclosed unless and except
When the order of individual steps is explicitly described.

Computer Environment

[0026] Numerous embodiments of the present invention
may execute on a computer. FIG. 1 and the folloWing
discussion is intended to provide a brief general description
of a suitable computing environment in Which the invention
may be implemented. Although not required, the invention
Will be described in the general context of computer execut
able instructions, such as program modules, being executed
by a computer, such as a client Workstation or a server.

Generally, program modules include routines, programs,
objects, components, data structures and the like that per
form particular tasks or implement particular abstract data
types. Moreover, those skilled in the art Will appreciate that
the invention may be practiced With other computer system
con?gurations, including hand held devices, multiprocessor
systems, microprocessor based or programmable consumer
electronics, netWork PCs, minicomputers, mainframe com
puters and the like. The invention may also be practiced in
distributed computing environments Where tasks are per
formed by remote processing devices that are linked through
a communications netWork. In a distributed computing
environment, program modules may be located in both local
and remote memory storage devices.

[0027] As shoWn in FIG. 1, an exemplary general purpose
computing system includes a conventional personal com
puter 20 or the like, including a processing unit 21, a system
memory 22, and a system bus 23 that couples various system
components including the system memory to the processing
unit 21. The system bus 23 may be any of several types of
bus structures including a memory bus or memory control
ler, a peripheral bus, and a local bus using any of a variety
of bus architectures. The system memory includes read only
memory (ROM) 24 and random access memory (RAM) 25.
Abasic input/output system 26 (BIOS), containing the basic
routines that help to transfer information betWeen elements
Within the personal computer 20, such as during start up, is
stored in ROM 24. The personal computer 20 may further
include a hard disk drive 27 for reading from and Writing to
a hard disk, not shoWn, a magnetic disk drive 28 for reading
from or Writing to a removable magnetic disk 29, and an
optical disk drive 30 for reading from or Writing to a
removable optical disk 31 such as a CD ROM or other
optical media. The hard disk drive 27, magnetic disk drive
28, and optical disk drive 30 are connected to the system bus
23 by a hard disk drive interface 32, a magnetic disk drive
interface 33, and an optical drive interface 34, respectively.
The drives and their associated computer readable media

US 2006/0004667 A1

provide non volatile storage of computer readable instruc
tions, data structures, program modules and other data for
the personal computer 20. Although the exemplary environ
ment described herein employs a hard disk, a removable
magnetic disk 29 and a removable optical disk 31, it should
be appreciated by those skilled in the art that other types of
computer readable media Which can store data that is
accessible by a computer, such as magnetic cassettes, ?ash
memory cards, digital video disks, Bernoulli cartridges,
random access memories (RAMs), read only memories
(ROMs) and the like may also be used in the exemplary
operating environment.

[0028] A number of program modules may be stored on
the hard disk, magnetic disk 29, optical disk 31, ROM 24 or
RAM 25, including an operating system 35, one or more
application programs 36, other program modules 37 and
program data 38. Auser may enter commands and informa
tion into the personal computer 20 through input devices
such as a keyboard 40 and pointing device 42. Other input
devices (not shoWn) may include a microphone, joystick,
game pad, satellite disk, scanner or the like. These and other
input devices are often connected to the processing unit 21
through a serial port interface 46 that is coupled to the
system bus, but may be connected by other interfaces, such
as a parallel port, game port or universal serial bus (USB).
A monitor 47 or other type of display device is also
connected to the system bus 23 via an interface, such as a
video adapter 48. In addition to the monitor 47, personal
computers typically include other peripheral output devices
(not shoWn), such as speakers and printers. The exemplary
system of FIG. 1 also includes a host adapter 55, Small
Computer System Interface (SCSI) bus 56, and an external
storage device 62 connected to the SCSI bus 56.

[0029] The personal computer 20 may operate in a net
Worked environment using logical connections to one or
more remote computers, such as a remote computer 49. The
remote computer 49 may be another personal computer, a
server, a router, a netWork PC, a peer device or other
common netWork node, and typically includes many or all of
the elements described above relative to the personal com
puter 20, although only a memory storage device 50 has
been illustrated in FIG. 1. The logical connections depicted
in FIG. 1 include a local area netWork (LAN) 51 and a Wide
area netWork 52. Such netWorking environments are
commonplace in of?ces, enterprise Wide computer net
Works, intranets and the Internet.

[0030] When used in a LAN netWorking environment, the
personal computer 20 is connected to the LAN 51 through
a netWork interface or adapter 53. When used in a WAN
netWorking environment, the personal computer 20 typically
includes a modem 54 or other means for establishing com
munications over the Wide area netWork 52, such as the
Internet. The modem 54, Which may be internal or external,
is connected to the system bus 23 via the serial port interface
46. In a netWorked environment, program modules depicted
relative to the personal computer 20, or portions thereof,
may be stored in the remote memory storage device. It Will
be appreciated that the netWork connections shoWn are
exemplary and other means of establishing a communica
tions link betWeen the computers may be used. Moreover,
While it is envisioned that numerous embodiments of the
present invention are particularly Well-suited for computer

Jan. 5, 2006

iZed systems, nothing in this document is intended to limit
the invention to such embodiments.

Virtual Machines

[0031] From a conceptual perspective, computer systems
generally comprise one or more layers of softWare running
on a foundational layer of hardWare. This layering is done
for reasons of abstraction. By de?ning the interface for a
given layer of softWare, that layer can be implemented
differently by other layers above it. In a Well-designed
computer system, each layer only knoWs about (and only
relies upon) the immediate layer beneath it. This alloWs a
layer or a “stack” (multiple adjoining layers) to be replaced
Without negatively impacting the layers above said layer or
stack. For example, softWare applications (upper layers)
typically rely on loWer levels of the operating system (loWer
layers) to Write ?les to some form of permanent storage, and
these applications do not need to understand the difference
betWeen Writing data to a ?oppy disk, a hard drive, or a
netWork folder. If this loWer layer is replaced With neW
operating system components for Writing ?les, the operation
of the upper layer softWare applications remains unaffected.

[0032] The ?exibility of layered softWare alloWs a virtual
machine (VM) to present a virtual hardWare layer that is in
fact another softWare layer. In this Way, a VM can create the
illusion for the softWare layers above it that said softWare
layers are running on their oWn private computer system,
and thus VMs can alloW multiple “guest systems” to run
concurrently on a single “host system.”

[0033] FIG. 2 is a diagram representing the logical lay
ering of the hardWare and softWare architecture for an
emulated operating environment in a computer system. An
emulation program 94 runs on a host operating system.
and/or hardWare architecture 92. Emulation program 94
emulates a guest hardWare architecture 96 and a guest
operating-system 98. SoftWare application 100 in turn runs
on guest operating system 98. In the emulated operating
environment of FIG. 2, because of the operation of emula
tion program 94, softWare application 100 can run on the
computer system 90 even though softWare application 100 is
designed to run on an operating system that is generally
incompatible With the host operating system and hardWare
architecture 92.

[0034] FIG. 3A illustrates a virtualiZed computing system
comprising a host operating system softWare layer 104
running directly above physical computer hardWare 102, and
the host operating system (host OS) 104 virtualiZes all the
resources of the machine by exposing interfaces that are the
same as the hardWare the host OS is virtualiZing (Which
enables the host OS to go unnoticed by operating system
layers running above it).
[0035] Alternately, a virtual machine monitor, or VMM,
softWare layer 104‘ may be running in place of or alongside
a host OS 104“, the latter option being illustrated in FIG.
3B. For simplicity, all discussion hereinafter (speci?cally
regarding the host operating system 104) shall be directed to
the embodiment illustrated in FIG. 3A; hoWever, every
aspect of such discussion shall equally apply to the embodi
ment of FIG. 3B Wherein the VMM 104‘ of FIG. 3B
essentially replaces, on a functional level, the role of the host
operating system 104 of FIG. 3A described herein beloW.

[0036] Referring again to FIG. 3A, above the host OS 104
(or VMM 104‘) are tWo virtual machine (VM) implemen

US 2006/0004667 A1

tations, VM A 108, Which may be, for example, a virtualiZed
Intel 386 processor, and VM B 110, Which may be, for
example, a virtualiZed version of one of the Motorola 680><0
family of processors. Above each VM A 108 and 110 are
guest operating systems (guest OSs) A 112 and B 114
respectively. Above guest OS A 112 are running tWo appli
cations, application A1 116 and application A2118, and
above guest OS B 114 is application B1120.

VM Software License Enforcement

[0037] Various embodiments of the present invention are
directed to a revised licensing model Where a softWare
product, such as an operating system, is licensed on a
per-instance basis (instead of on a per-hardWare basis). For
a virtual machine environment, each VM Would comprise an
“instance” for Which a license Would be required. To support
this licensing model, both automatic enforcement of licens
ing as Well as an automated means of obtaining necessary
licenses are bene?cial.

[0038] FIG. 4 illustrates portions of the system of FIG.
3B that further comprising an emulated hardWare device, in
this instance a license card, for each virtual machine. ShoWn
in FIG. 4 is VM A 108 logically coupled to license card
virtual device A 122 and VM B 110 logically coupled to a
license card virtual device B 124. FIG. 4 also illustrates that
VMM 104‘ further comprises a license manager (LM) 126
logically coupled to each license card virtual device 122 and
124. The emulated hardWare device described in FIG. 4
regarding VM A 108 and VM B 110 is exemplary and any
other VM in this virtual machine environment Would com
prise its oWn similar license card virtual device coupled to
the LM 126. Of course, these license cards (e.g., 122 and
124) are emulated hardWare devices that do not necessarily
have (or need) a physical counterpart in the computer
hardWare 102.

[0039] From the perspective of guest OS A 112, license
card A 122 appears to be similar to any other peripheral
device that is controlled through a softWare driver. Upon
recogniZing the presence of license card A 122 during the
initiation or boot phase, guest OS A 112 determines Whether
the associated driver for license cardA 122 is installed. If the
associated driver for license card A 122 has not been
installed, guest OS A 112 attempts to retrieve and install the
associated softWare driver.

[0040] The function of LM 126 is to automatically moni
tor and enforce the softWare license restrictions on, for
example, the operating system softWare for each and every
virtual machines, such as VM A 108 and VM B 110, that is
run on a VMM. LM 126 includes a count of the number of
licensed guest OSs that may be operating simultaneously in
the virtual machines of the virtualiZed computing system.
The number of licensed guest OSs may be one, tWo, six, or
more, depending on the license rights purchased by the
computer user. As for enforcement, since the VMM 104‘
monitors the itemiZation of plug and play devices by each of
the guest OSs, e.g. guest OS A 112 and guest OS B 114, the
addition by each VM 108 and 110 of their respective license
card virtual devices 122 and 124 is recogniZed by the VMM
104‘ and formaliZed With the LM 126 automatically—that is,
each license card 122 and 124 is automatically coupled to
the LM 126 at the time a guest OS 112 and 114 recogniZe
said virtual devices 122 and 124, Which automatically hap
pens as the operating system for each VM is started.

Jan. 5, 2006

Thereafter, When a license card 122 or 124 needs a license,
this need is automatically communicated directly With LM
126 to request the necessary license key. If the LM is unable
to obtain the necessary license keys for, say, and OS for
speci?c VM, that VM is shut doWn by the VMM.

[0041] FIG. 5 is a ?oWchart that illustrates a method 130
of initiating and licensing the operating system softWare of
a virtual machine. At step 132, the method ?rst comprises
the initiation sequence for a virtual machine. At step 134, a
guest operating system identi?es a license card. At step 136,
VMM 104‘ communicates With LM 126 to request a license
key. At step 138, LM 126 determines Whether an additional
OS license is available for the guest OS. If yes, at step 140,
LM 126 passes a key or some other authoriZation code to
VMM 104‘, Which permits the guest OS to continue boot up.
If no, at step 144, VMM 104‘ halts guest operating system
and method 130 ends. Subsequently, at step 142, LM 126
decrements its count of available guest OS licenses or keys.
At this point, the licensed guest OS is said to have consumed
a key from LM 126. Once the count of available guest OS
licenses reaches Zero, no additional keys or authoriZations
are issued by LM 126. In an alternative embodiment, the LM
may also comprise a subsystem for automatically obtaining
additional licenses from a license vendor and, if unsuccess
ful at obtaining additional licenses, then proceeding to shut
doWn the unlicensed guest OS.

[0042] For example, if the count of available guest OSs is
Zero, and if VMM 104‘ requested a licenser key, LM 126
Would notify VMM 104‘ that no additional guest OS licenses
are available. VMM 104‘ Would then interrupt the boot
sequence of the virtual machine and prevent the operating
system softWare of the associated virtual machine from
running, as shoWn in step 144. LM 126 maintains a record
of the licensed guest OSs. If a licensed guest operating
system is terminated, VMM 104‘ noti?es LM 126, Which
increments the count of available guest OSs. The termina
tion of a licensed guest OS has the effect of returning a key
to LM 126.

[0043] The transfer of the license key from LM 126 to
each virtual machine is accomplished in a secure transport
medium. As part of the key transfer process, the operating
system vendor may seek to transfer encrypted handshaking
signals to the guest OS to con?rm that the guest OS is a
licensable version of host OS 104“. Communications to and
from the guest OS can be accomplished through an emulated
hardWare device, such as license card A 124. License card A
124 Would communicate the encrypted signals to VMM
104‘, Which could pass the encrypted signals to LM 126 of
host OS 104“. The logical relationship of license card 124,
VMM 104‘, and LM 126 are shoWn in FIG. 4. Alternatively,
the host OS 104“ and the guest OSs could communicate
encrypted signals through the hardWare abstraction layer of
the virtualiZed computing system.

[0044] LM 126 Will perform periodic queries of each of
the virtual machines to con?rm the softWare licensing status
of each of the operating systems of the virtual machines. The
periodic license checks con?rm that the operating system of
each virtual machine Was licensed by LM 126 and that none
of the virtual machines have stalled or timed out. If it is
determined that any of the guest OSs Was not licensed by
LM 126, LM 126 Will determine Whether a license is
available for the unlicensed guest OS, i.e., Whether the count

US 2006/0004667 A1

of available guest OS licenses is greater than Zero. If an
unlicensed guest OS is detected, and if additional license
keys are available, the count of available licenses Will be
decremented and the unlicensed guest OS Will be licensed
by LM 126. If an unlicensed guest OS is detected, and if no
additional license keys are available, the unlicensed guest
OS Will be halted or terminated.

[0045] Problems that result from unlicensed guest OSs
may occur in the example Where a virtual machine has been
halted and migrated betWeen physical computer systems. In
this example, a virtual machine may be initiated and licensed
for use on a computer system With available license keys.
This virtual machine may then be halted and migrated to
another computer system With no available license keys. The
periodic querying of the virtual machines by the license
manager Will detect this migrated virtual machine, Which
Will result in either obtaining an additional license (either by
purchase or from another LM) for the migrated virtual
machine in the destination computer system or the termina
tion of the migrated virtual machine in the destination
computer system.

VM Software License Revenue Collection

[0046] FIG. 6 is a ?oWchart that illustrates a method 150
of collecting operating system license revenue by using a
virtual machine environment. More speci?cally, method 150
of the present invention provides a means for collecting
license revenue for modern or legacy operating systems or
applications in a virtual machine environment in a manner
that provides an ongoing revenue stream, rather than a
one-time transaction, for a softWare manufacturer.

[0047] At step 152, the method ?rst comprises the cus
tomer requesting a softWare license from the softWare manu
facturer. At step 154, the softWare manufacturer (or licensee)
sets the fee amount for the requested softWare license
according to, for example, the time duration of the license
requested and receives payment accordingly from the cus
tomer. This payment may be in the form of a one-time
payment for a perpetual license agreement; hoWever, in a
preferred embodiment, the payment is a monthly or annual
payment (or any predetermined time period) associated With
a reneWable license agreement, Which ensures a constant
revenue stream for the softWare manufacturer and also
provides an advantage to the customer of receiving softWare
upgrades, if available, upon each reneWal. Upon initial
purchase or reneWal of the softWare license by the customer,
the softWare manufacturer creates the softWare license and,
subsequently, delivers the softWare license to the customer,
for example, electronically (i.e., via email), via a compact
disk (CD), or any suitable means. At step 156, the customer
determines Which virtualiZed computing system the license
is to be deployed on. With continuing reference to FIG. 4,
the license is then deployed to the LM 126 of a given VMM
104‘. At step 158 of FIG. 6, a virtual machine and associated
guest OS, such as VM A 108 and guest OS A 112 of FIG.
4, are initiated according to method 130, as described in
FIG. 5. At step 160, the LM 126 of any given VMM 104‘
continuously monitors the status of the license by monitor
ing the license attributes to determine Whether conditions
exist that Would disalloW its use. Attributes include, for
example, the OS type or version, the start date, Which
establishes the beginning of the license, the duration of the
license, Which then determines the ending date, and the

Jan. 5, 2006

capacity (i.e., hoW many users are alloWed), among other
things. At step 162, if the license is valid because there are
no violations of the license attributes, the VM and guest OS
are alloWed to execute, as indicated in step 164, While being
continuously monitored, as described in step 160. HoWever,
at step 162, if the license is no longer valid because of
violations, such as time expiration, as established in the
license attributes, the VMM 104‘ halts the VM and guest OS,
as indicated in step 166. At step 168, in the event that the
VM and guest OS are halted, the customer is noti?ed and
subsequently decides Whether he/she Wishes to extend
(reneW) the softWare license. If the customer does not Wish
to reneW the license agreement, the VM and guest OS in
question remain halted. If the customer does Wish to reneW
the license agreement, the customer again requests the
softWare license from the softWare manufacturer, as indi
cated in step 152. Furthermore, at time of reneWal, the
softWare manufacturer may provide any incremental soft
Ware upgrades or support to the customer that may exist.

[0048] With continuing reference to FIGS. 4, 5, and 6, in
alternative embodiments, the license manager functionality
resides on a separate, physical machine that serves as a
centraliZed repository of all available licenses and thereby
provides a means of managing licenses across an enterprise
level con?guration, by supplying licenses to VMMs on
physical systems across an organiZation. This arrangement
provides a further advantage in that it alloWs the customer to
dynamically balance their licenses Within their organiZation,
such as an enterprise, a datacenter at the server level, or upon
desktop PCs in a large organiZation.

[0049] The present invention is not limited in its applica
tion to the emulation of a particular computer system
architecture, particularly the Intel 80x86 architecture.
Rather, the emulation technique disclosed herein is appli
cable at any time that it is desirable to license multiple
instances of softWare in a virtual or emulated computing
environment. It should also be understood that the present
invention is not limited to the licensing of operating system
softWare. The techniques described herein may be used to
establish a licensing protocol for application softWare in a
virtual or emulated computing environment. It should be
also understood that the use of the present invention is not
limited to those computing environments in Which the host
operating system and the licensed operating system are
identical. The techniques of the present invention could be
employed in those instances in Which the host operating
system and the guest operating systems are variants Within
the same family of operating systems. Alternatively, the host
operating systems and one or more of the guest operating
systems could be operating systems associated With different
hardWare platforms.

[0050] Although the present invention has been described
in detail, it should be understood that various changes,
substitutions, and alterations can be made thereto Without
departing from the spirit and scope of the invention, as
de?ned by the appended claims.

Conclusion

[0051] The various systems, methods, and techniques
described herein may be implemented With hardWare or
softWare or, Where appropriate, With a combination of both.
Thus, the methods and apparatus of the present invention, or
certain aspects or portions thereof, may take the form of

US 2006/0004667 A1

program code (i.e., instructions) embodied in tangible
media, such as ?oppy diskettes, CD-ROMs, hard drives, or
any other machine-readable storage medium, Wherein, When
the program code is loaded into and executed by a machine,
such as a computer, the machine becomes an apparatus for
practicing the invention. In the case of program code execu
tion on programmable computers, the computer Will gener
ally include a processor, a storage medium readable by the
processor (including volatile and non-volatile memory and/
or storage elements), at least one input device, and at least
one output device. One or more programs are preferably
implemented in a high level procedural or object oriented
programming language to communicate With a computer
system. HoWever, the program(s) can be implemented in
assembly or machine language, if desired. In any case, the
language may be a compiled or interpreted language, and
combined With hardWare implementations.

[0052] The methods and apparatus of the present invention
may also be embodied in the form of program code that is
transmitted over some transmission medium, such as over
electrical Wiring or cabling, through ?ber optics, or via any
other form of transmission, Wherein, When the program code
is received and loaded into and executed by a machine, such
as an EPROM, a gate array, a programmable logic device
(PLD), a client computer, a video recorder or the like, the
machine becomes an apparatus for practicing the invention.
When implemented on a general-purpose processor, the
program code combines With the processor to provide a
unique apparatus that operates to perform the indexing
functionality of the present invention.

[0053] While the present invention has been described in
connection With the preferred embodiments of the various
?gures, it is to be understood that other similar embodiments
may be used or modi?cations and additions may be made to
the described embodiment for performing the same function
of the present invention Without deviating there from. For
example, While exemplary embodiments of the invention are
described in the context of digital devices emulating the
functionality of personal computers, one skilled in the art
Will recogniZe that the present invention is not limited to
such digital devices, as described in the present application
may apply to any number of existing or emerging computing
devices or environments, such as a gaming console, hand
held computer, portable computer, etc. Whether Wired or
Wireless, and may be applied to any number of such com
puting devices connected via a communications netWork,
and interacting across the netWork. Furthermore, it should be
emphasiZed that a variety of computer platforms, including
handheld device operating systems and other application
speci?c hardWare/softWare interface systems, are herein
contemplated, especially as the number of Wireless net
Worked devices continues to proliferate. Therefore, the
present invention should not be limited to any single
embodiment, but rather construed in breadth and scope in
accordance With the appended claims.

[0054] Finally, the disclosed embodiments described
herein may be adapted for use in other processor architec
tures, computer-based systems, or system virtualiZations,
and such embodiments are expressly anticipated by the
disclosures made herein and, thus, the present invention
should not be limited to speci?c embodiments described
herein but instead construed most broadly. Likewise, the use
of synthetic instructions for purposes other than processor

Jan. 5, 2006

virtualiZation are also anticipated by the disclosures made
herein, and any such utiliZation of synthetic instructions in
contexts other than processor virtualiZation should be most
broadly read into the disclosures made herein.

1. Amethod of licensing a softWare product for utiliZation
by a plurality of virtual machines in a virtual machine
environment, said method comprising licensing said soft
Ware product on a virtual machine by virtual machine basis.

2. The method of claim 1 further comprising enforcing
licensing compliance for each virtual machine among said
plurality of virtual machines in said virtual machine envi
ronment.

3. The method of claim 2 Wherein said element of
enforcing licensing compliance for each virtual machine
among said plurality of virtual machines in said virtual
machine environment further comprises automatically uti
liZing a license card virtual device for each said virtual
machine, said license card virtual device logically coupled
to a license manager, said license manager alloWing said
softWare product to execute on said virtual machine only
When a license for said softWare product for said virtual
machine is available to the virtual machine and can be
assigned to said virtual machine.

4. The method of claim 3 Wherein said softWare product
is an operating system.

5. The method of claim 3 Wherein said license manager
obtains at least one neW license from a license vendor When
an additional license is required for a virtual machine.

6. The method of claim 1 further comprising automati
cally obtaining at least one additional licensing for a virtual
machine in said virtual machine environment When such a
license is not present and available for said virtual machine.

7. The method of claim 1 Wherein said softWare product
is an operating system, said method further comprising the
folloWing elements for implementing said method:

initiating a virtual machine, said virtual machine com
prising a license card virtual device;

assigning a license key to said license card of said virtual
machine if a license key is available; and

if a license key is not available, halting execution of said
virtual machine.

8. The method of claim 7 further comprising, before the
element of assigning a license key, determining if a license
key Will be available if needed and, if not, acquiring at least
one additional license key from a license vendor.

9. Asystem for licensing a softWare product for utiliZation
by a plurality of virtual machines in a virtual machine
environment, said system comprising at least one subsystem
for licensing said softWare product on a virtual machine by
virtual machine basis.

10. The system of claim 9 further comprising at least one
subsystem for enforcing licensing compliance for each vir
tual machine among said plurality of virtual machines in
said virtual machine environment.

11. The system of claim 10 further comprising at least one
subsystem for utiliZing a license card virtual device for each
said virtual machine, said license card virtual device logi
cally coupled to a license manager, said license manager
alloWing said softWare product to execute on said virtual
machine only When a license for said softWare product for
said virtual machine is available to the virtual machine and
can be assigned to said virtual machine.

US 2006/0004667 A1

12. The system of claim 11 wherein said software product
is an operating system.

13. The system of claim 11 said further comprising at least
one subsystem for said license manager to obtain at least one
neW license from a license vendor When an additional
license is required for said virtual machine.

14. The system of claim 9 further comprising at least one
subsystem for automatically obtaining at least one additional
licensing for a virtual machine in said virtual machine
environment When such a license is not present and available
for said virtual machine.

15. The system of claim 9 Wherein said softWare product
is an operating system, said method further comprising at
least one subsystem for:

initiating a virtual machine, said virtual machine com
prising a license card virtual device;

assigning a license key to said license card of said virtual
machine if a license key is available; and

if a license key is not available, halting eXecution of said
virtual machine.

16. The system of claim 15 further comprising at least one
subsystem for, before the element of assigning a license key,
determining if a license key Will be available if needed and,
if not, acquiring at least one additional license key from a
license vendor.

17. A computer-readable medium comprising computer
readable instructions for licensing a softWare product for
utilization by a plurality of virtual machines in a virtual
machine environment, said computer-readable instructions
comprising instructions for licensing said softWare product
on a virtual machine by virtual machine basis.

18. The computer-readable instructions of claim 17 fur
ther comprising instructions for enforcing licensing compli
ance for each virtual machine among said plurality of virtual
machines in said virtual machine environment.

19. The computer-readable instructions of claim 18 fur
ther comprising instructions Whereby enforcing licensing
compliance for each virtual machine among said plurality of
virtual machines in said virtual machine environment by
utiliZing a license card virtual device for each said virtual
machine, said license card virtual device logically coupled
to a license manager, said license manager alloWing said
softWare product to execute on said virtual machine only
When a license for said softWare product for said virtual
machine is available to the virtual machine and can be
assigned to said virtual machine.

20. The computer-readable instructions of claim 19 fur
ther comprising instructions Whereby said softWare product
is an operating system.

21. The computer-readable instructions of claim 19 fur
ther comprising instructions for said license manager to
obtain at least one neW license from a license vendor When
an additional license is required for a virtual machine.

22. The computer-readable instructions of claim 17 fur
ther comprising instructions for automatically obtaining at
least one additional licensing for a virtual machine in said
virtual machine environment When such a license is not
present and available for said virtual machine.

23. The computer-readable instructions of claim 17,
Wherein said softWare product is an operating system, said
computer-readable instructions further comprising instruc
tions for:

Jan. 5, 2006

initiating a virtual machine, said virtual machine com
prising a license card virtual device;

assigning a license key to said license card of said virtual
machine if a license key is available; and

if a license key is not available, halting eXecution of said
virtual machine.

24. The computer-readable instructions of claim 23 fur
ther comprising instructions for, before the element of
assigning a license key, determining if a license key Will be
available if needed and, if not, acquiring at least one
additional license key from a license vendor.

25. A hardWare control device for licensing a softWare
product for utiliZation by a plurality of virtual machines in
a virtual machine environment, said hardWare control device
comprising means for licensing said softWare product on a
virtual machine by virtual machine basis.

26. The hardWare control device of claim 25 further
comprising means for enforcing licensing compliance for
each virtual machine among said plurality of virtual
machines in said virtual machine environment.

27. The hardWare control device of claim 26 further
comprising means for automatically utiliZing a license card
virtual device for each said virtual machine, said license card
virtual device logically coupled to a license manager, said
license manager alloWing said softWare product to execute
on said virtual machine only When a license for said softWare
product for said virtual machine is available to the virtual
machine and can be assigned to said virtual machine.

28. The hardWare control device of claim 27 Wherein said
softWare product is an operating system.

29. The hardWare control device of claim 27 further
comprising means Whereby said license manager obtains at
least one neW license from a license vendor When an

additional license is required for a virtual machine.

30. The hardWare control device of claim 25 further
comprising means for automatically obtaining at least one
additional licensing for a virtual machine in said virtual
machine environment When such a license is not present and
available for said virtual machine.

31. The hardWare control device of claim 25 Wherein said
softWare product is an operating system, said hardWare
control device further comprising means for:

initiating a virtual machine, said virtual machine com
prising a license card virtual device;

assigning a license key to said license card of said virtual
machine if a license key is available; and

if a license key is not available, halting eXecution of said
virtual machine.

32. The hardWare control device of claim 31 further
comprising means for, before the element of assigning a
license key, determining if a license key Will be available if
needed and, if not, acquiring at least one additional license
key from a license vendor.

