
US 20060005190A1

(12) Patent Application Publication (10) Pub. No.: US 2006/0005190 A1
(19) United States

Vega et al. (43) Pub. Date: Jan. 5, 2006

(54) SYSTEMS AND METHODS FOR
IMPLEMENTING AN OPERATING SYSTEM
IN A VIRTUAL MACHINE ENVIRONMENT

(75) Inventors: Rene Antonio Vega, Kirkland, WA
(US); Eric P. Traut, Bellevue, WA
(US); Mike Neil, Issaquah, WA (US)

Correspondence Address:
WOODCOCK WASHBURN LLP
(MICROSOFT CORPORATION)
ONE LIBERTY PLACE - 46TH FLOOR

PHILADELPHIA, PA 19103 (US)

(73) Assignee: Microsoft Corporation, Redmond, WA

(21) Appl. No.: 10/882,979

(52) Us. 01. 718/1

(57) ABSTRACT

The present invention includes systems for and methods of
implementing an operating system that is capable of ascer
taining Whether it is operating in a virtual machine environ
ment and is further capable of modifying its behavior to
operate more efficiently in a virtual machine environment.
Embodiments of the present invention are directed to a

system and method for providing operating systems that are
aWare that they are operating in a virtual machine environ
ment and, as a result of this realization, are able to reduce

22 F1 d: . 30 2004 . . .
() 1 6 Jun ’ some of the performance overhead associated With a virtual

publication Classi?cation machine environment. The invention relaxes the illusion that
a guest operating system is operating on dedicated hardWare

(51) Int, Cl, and describes Ways for the guest operating system to operate
G06F 9/46 (2006.01) more ef?ciently noW that this illusion has been relaxed.

Shared Shared
Communication communication
Area A 162 Area B 164

1 1 6 1 1 8 1 20

App A1 App A2 App B1 /

1 32

\IM Aware /'134 VM-AWBI'G
Scheduler A 166 Scheduler B 168

VM-Aware ‘ VM-Aware

\rw: pumps/i ‘j MOSH

108 i 1 1 O

_ \ Virtual Machine A Virtual Machine B l/
Virtual Processors

170 \ 104 Host Scheduler 172

Host Operating System U

102

\\ Computer Hardware

Patent Application Publication Jan. 5, 2006 Sheet 2 0f 8 US 2006/0005190 Al

N .5 0369203 QmBEmI
\. ocm Ewugw mm 95830 601 9209E8< \ EQsEwI #850

F Emugw \. 9:930 “$30

Patent Application Publication Jan. 5, 2006 Sheet 3 0f 8 US 2006/0005190 A1

9256: .6SQE00 Em5>w 9:930 “mo:

m wO H9030

o:

5 2%

v: oNF

/ wow I/ wow

< mzEomE _m:E>

/ wow

.4 m0 696

/ NS‘

w< QQ< QQ

./ E < ./

CD
T.

‘

m:

Patent Application Publication Jan. 5, 2006 Sheet 4 0f 8 US 2006/0005190 A1

mm .5 EQsEmI ESQEQQ

E296 9:930 601

6:82 220% 53.5

m 2282 555

J o:

mwouwmzw
J v:

_‘ an

m < J

ow?

J w? J .2:

5:28: EELS J
E: N:

m:

Patent Application Publication Jan. 5, 2006 Sheet 5 0f 8 US 2006/0005190 A1

w .mm EQsEmI ESQEOO E2w>w @5930 Go:

Now

< mcEomE _m:E>

wow

E na<

mow

vmw

~< 95

cm?

2 Q3

N2 m:

Patent Application Publication Jan. 5, 2006 Sheet 6 0f 8 US 2006/0005190 A1

m .3

23% SP6

cm?

\ 9. 632mm mEQuoE

9952a: umumenmu E @5930

wo> m E @5930

oz

03

Patent Application Publication Jan. 5, 2006 Sheet 7 0f 8 US 2006/0005190 Al

N: Einocow umoI Q: m @328

E

@ .mm EmBEmI ESQEQQ

No?

Eggw @5930 “we:

_ 247... = m it:

2: / Qt we?

< m0 326 UL/

wow < kmSvmEow
/ 9m>>< 55 mm?

US 2006/0005190 A1

SYSTEMS AND METHODS FOR IMPLEMENTING
AN OPERATING SYSTEM IN A VIRTUAL

MACHINE ENVIRONMENT

CROSS-REFERENCE

[0001] This application is related by subject matter to the
inventions disclosed in the following commonly assigned
applications: US. patent application Ser. No. 10/685,051
(Atty. Docket No. MSFT-2570/305147.01), ?led on Oct. 14,
2003 and entitled, “SYSTEMS AND METHODS FOR
USING SYNTHETIC INSTRUCTIONS IN A VIRTUAL
MACHINE”; US. patent application Ser. No. 10/734,450
(Atty. Docket No. MSFT-2772/305423.01), ?led on Dec. 12,
2003 and entitled “SYSTEMS AND METHODS FOR
BIMODAL DEVICE VIRTUALIZATION OF ACTUAL
AND IDEALIZED HARDWARE-BASED DEVICES”; and
US. patent application Ser. No. 10/274,298 (Atty. Docket
No. MSFT-2564/304108.01), ?led on Oct. 18, 2002 and
entitled, “SOFTWARE LICENSE ENFORCEMENT
MECHANISM FOR AN EMULATED COMPUTING
ENVIRONMENT,” the entirety of said patent applications
being hereby incorporated herein by reference.

FIELD OF THE INVENTION

[0002] The present invention generally relates to the ?eld
virtual machines (also knoWn as “processor virtualiZation”)
and softWare that executes in a virtual machine environment.
More speci?cally, the present invention relates to systems
and methods for implementing an operating system that is
able to ascertain Whether it is running in a virtual machine
environment and that is able to modify its behavior accord
ingly.

BACKGROUND OF THE INVENTION

[0003] Computers include general purpose central pro
cessing units (CPUs) that are designed to execute a speci?c
set of system instructions. A group of processors that have
similar architecture or design speci?cations may be consid
ered to be members of the same processor family. Examples
of current processor families include the Motorola 680><0
processor family, manufactured by Motorola, Inc. of Phoe
nix, AriZ.; the Intel 80><86 processor family, manufactured
by Intel Corporation of Sunnyvale, Calif.; and the PoWerPC
processor family, Which is manufactured by Motorola, Inc.
and used in computers manufactured by Apple Computer,
Inc. of Cupertino, Calif. Although a group of processors may
be in the same family because of their similar architecture
and design considerations, processors may vary Widely
Within a family according to their clock speed and other
performance parameters.

[0004] Each family of microprocessors executes instruc
tions that are unique to the processor family. The collective
set of instructions that a processor or family of processors
can execute is knoWn as the processor’s instruction set. As
an example, the instruction set used by the Intel 80><86
processor family is incompatible With the instruction set
used by the PoWerPC processor family. The Intel 80><86
instruction set is based on the Complex Instruction Set
Computer (CISC) format. The Motorola PoWerPC instruc
tion set is based on the Reduced Instruction Set Computer
(RISC) format. CISC processors use a large number of
instructions, some of Which can perform rather complicated

Jan. 5, 2006

functions, but Which require generally many clock cycles to
execute. RISC processors use a smaller number of available
instructions to perform a simpler set of functions that are
executed at a much higher rate.

[0005] The uniqueness of the processor family among
computer systems also typically results in incompatibility
among the other elements of hardWare architecture of the
computer systems. A computer system manufactured With a
processor from the Intel 80><86 processor family Will have a
hardWare architecture that is different from the hardWare
architecture of a computer system manufactured With a
processor from the PoWerPC processor family. Because of
the uniqueness of the processor instruction set and a com
puter system’s hardWare architecture, application softWare
programs are typically Written to run on a particular com
puter system running a particular operating system.

[0006] Computer manufacturers Want to maximiZe their
market share by having more rather than feWer applications
run on the microprocessor family associated With the com
puter manufacturers’ product line. To expand the number of
operating systems and application programs that can run on
a computer system, a ?eld of technology has developed in
Which a given computer having one type of CPU, called a
host, Will include an emulator program that alloWs the host
computer to emulate the instructions of an unrelated type of
CPU, called a guest. Thus, the host computer Will execute an
application that Will cause one or more host instructions to
be called in response to a given guest instruction. Thus the
host computer can both run softWare design for its oWn
hardWare architecture and softWare Written for computers
having an unrelated hardWare architecture. As a more spe
ci?c example, a computer system manufactured by Apple
Computer, for example, may run operating systems and
program Written for PC-based computer systems. It may also
be possible to use an emulator program to operate concur
rently on a single CPU multiple incompatible operating
systems. In this arrangement, although each operating sys
tem is incompatible With the other, an emulator program can
host one of the tWo operating systems, alloWing the other
Wise incompatible operating systems to run concurrently on
the same computer system.

[0007] When a guest computer system is emulated on a
host computer system, the guest computer system is said to
be a “virtual machine” as the guest computer system only
exists in the host computer system as a pure softWare
representation of the operation of one speci?c hardWare
architecture. The terms emulator, virtual machine, and pro
cessor emulation are sometimes used interchangeably to
denote the ability to mimic or emulate the hardWare archi
tecture of an entire computer system. As an example, the
Virtual PC softWare created by Connectix Corporation of
San Mateo, Calif. emulates an entire computer that includes
an Intel 80><86 Pentium processor and various motherboard
components and cards. The operation of these components is
emulated in the virtual machine that is being run on the host
machine. An emulator program executing on the operating
system softWare and hardWare architecture of the host
computer, such as a computer system having a PoWerPC
processor, mimics the operation of the entire guest computer
system.

[0008] The emulator program acts as the interchange
betWeen the hardWare architecture of the host machine and

US 2006/0005190 Al

the instructions transmitted by the software running Within
the emulated environment. This emulator program may be a
host operating system (HOS), Which is an operating system
running directly on the physical computer hardWare. Alter
nately, the emulated environment might also be a virtual
machine monitor (VMM) Which is a softWare layer that runs
directly above the hardWare and Which virtualiZes all the
resources of the machine by exposing interfaces that are the
same as the hardWare the VMM is virtualiZing (Which
enables the VMM to go unnoticed by operating system
layers running above it). A host operating system and a
VMM may run side-by-side on the same physical hardWare.

[0009] Current virtual machine softWare (such as Virtual
Server and Virtual PC, sold by Microsoft Corporation) alloW
for virtualiZation as described above, but there is signi?cant
performance overhead associated With alloWing for virtual
iZation. The performance overhead can reach levels as high
as 70%, particularly in softWare applications With heavy I/O
Workloads (With heavy disk access or netWork communica
tions). This level of overhead is unacceptable in applications
that require maximum processor speed. What is needed is a
Way to reduce processor overhead in a virtual machine
environment.

[0010] In conventional operating systems (OSs), certain
OS activities are performed With an assumption that the
operating system is running on dedicated physical hardWare.
In a virtual machine environment, these activities can be
detrimental to the other guest OSs that are running concur
rently on the same physical hardWare. These detrimental
activities tie up operating system resources (designed to run
on dedicated physical hardWare, not in a virtual environ
ment), because the operating system assumes that the hard
Ware is dedicated to it, and has no knoWledge of other
operating systems using the resources or Waiting to use
them. What is needed is a Way to modify the behavior of a
guest OS such that it is not detrimental to other guest OSs
that are running in a virtual machine environment.

SUMMARY OF THE INVENTION

[0011] The present invention includes systems for and
methods of implementing an operating system that is
capable of ascertaining Whether it is operating in a virtual
machine environment and is further capable of modifying its
behavior to operate more ef?ciently in a virtual machine
environment.

[0012] Embodiments of the present invention are directed
to a system for and method of providing operating systems
that are aWare that they are operating in a virtual machine
environment and, as a result of this realiZation, are able to
reduce some of the performance overhead Which has been
historically problematic With the virtual machine environ
ment. The introduction of a shared communication area
betWeen the host operating system and the guest operating
systems provides a mechanism for communication betWeen
guests and host Without passing control of the computer
betWeen host and guests. One example of the type of
communications passed betWeen guest operating systems
and host relates to thread scheduling. With the realiZation
that the guest is operating in a VM environment and With the
introduction of the shared communications area, guest oper
ating systems send additional information (such as execution
priorities) to the host operating system, Which alloWs the

Jan. 5, 2006

host operating system to make more-ef?cient thread sched
uling decisions, because the host has more information
regarding the overall demand (including that of guests) for
processor time.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The foregoing summary, as Well as the folloWing
detailed description of preferred embodiments, is better
understood When read in conjunction With the appended
draWings. For the purpose of illustrating the invention, there
is shoWn in the draWings exemplary constructions of the
invention; hoWever, the invention is not limited to the
speci?c methods and instrumentalities disclosed. In the
draWings:
[0014] FIG. 1 is a block diagram representing a computer
system in Which aspects of the present invention may be
incorporated;
[0015] FIG. 2 illustrates the logical layering of the hard
Ware and softWare architecture for an emulated operating
environment in a computer system;

[0016]
tem;

[0017] FIG. 3B illustrates an alternative embodiment of a
virtualiZed computing system comprising a virtual machine
monitor running alongside a host operating system;

[0018] FIG. 4 illustrates a virtualiZed computing system
from FIG. 3A further comprising a host operating system
With VM-aWare guest operating systems;

[0019] FIG. 5 is a ?oWchart that illustrates a method of
implementing a VM-aWare guest operating system With the
capability to modify its behavior in order to improve ef?
ciency in a virtual machine environment;

[0020] FIG. 6 illustrates an exemplary virtualiZed com
puting system comprising a host operating system With
shared communication areas betWeen the host operating
system and VM-aWare guest operating systems; and

[0021] FIG. 7 is a ?oWchart that illustrates an exemplary
method of scheduling threads in a VM-aWare operating
system according to the present invention.

FIG. 3A illustrates a virtualiZed computing sys

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

[0022] The inventive subject matter is described With
speci?city to meet statutory requirements. HoWever, the
description itself is not intended to limit the scope of this
patent. Rather, the inventor has contemplated that the
claimed subject matter might also be embodied in other
Ways, to include different steps or combinations of steps
similar to the ones described in this document, in conjunc
tion With other present or future technologies. Moreover,
although the term “step” may be used herein to connote
different elements of methods employed, the term should not
be interpreted as implying any particular order among or
betWeen various steps herein disclosed unless and except
When the order of individual steps is explicitly described.

Computer Environment

[0023] Numerous embodiments of the present invention
may execute on a computer. FIG. 1 and the folloWing

US 2006/0005190 A1

discussion is intended to provide a brief general description
of a suitable computing environment in Which the invention
may be implemented. Although not required, the invention
Will be described in the general context of computer execut
able instructions, such as program modules, being executed
by a computer, such as a client Workstation or a server.

Generally, program modules include routines, programs,
objects, components, data structures and the like that per
form particular tasks or implement particular abstract data
types. Moreover, those skilled in the art Will appreciate that
the invention may be practiced With other computer system
con?gurations, including hand held devices, multiprocessor
systems, microprocessor based or programmable consumer
electronics, netWork PCs, minicomputers, mainframe com
puters and the like. The invention may also be practiced in
distributed computing environments Where tasks are per
formed by remote processing devices that are linked through
a communications netWork. In a distributed computing
environment, program modules may be located in both local
and remote memory storage devices.

[0024] As shoWn in FIG. 1, an exemplary general purpose
computing system includes a conventional personal com
puter 20 or the like, including a processing unit 21, a system
memory 22, and a system bus 23 that couples various system
components including the system memory to the processing
unit 21. The system bus 23 may be any of several types of
bus structures including a memory bus or memory control
ler, a peripheral bus, and a local bus using any of a variety
of bus architectures. The system memory includes read only
memory (ROM) 24 and random access memory (RAM) 25.
Abasic input/output system 26 (BIOS), containing the basic
routines that help to transfer information betWeen elements
Within the personal computer 20, such as during start up, is
stored in ROM 24. The personal computer 20 may further
include a hard disk drive 27 for reading from and Writing to
a hard disk, not shoWn, a magnetic disk drive 28 for reading
from or Writing to a removable magnetic disk 29, and an
optical disk drive 30 for reading from or Writing to a
removable optical disk 31 such as a CD ROM or other
optical media. The hard disk drive 27, magnetic disk drive
28, and optical disk drive 30 are connected to the system bus
23 by a hard disk drive interface 32, a magnetic disk drive
interface 33, and an optical drive interface 34, respectively.
The drives and their associated computer readable media
provide non volatile storage of computer readable instruc
tions, data structures, program modules and other data for
the personal computer 20. Although the exemplary environ
ment described herein employs a hard disk, a removable
magnetic disk 29 and a removable optical disk 31, it should
be appreciated by those skilled in the art that other types of
computer readable media Which can store data that is
accessible by a computer, such as magnetic cassettes, ?ash
memory cards, digital video disks, Bernoulli cartridges,
random access memories (RAMs), read only memories
(ROMs) and the like may also be used in the exemplary
operating environment.
[0025] A number of program modules may be stored on
the hard disk, magnetic disk 29, optical disk 31, ROM 24 or
RAM 25, including an operating system 35, one or more
application programs 36, other program modules 37 and
program data 38. Auser may enter commands and informa
tion into the personal computer 20 through input devices
such as a keyboard 40 and pointing device 42. Other input
devices (not shoWn) may include a microphone, joystick,

Jan. 5, 2006

game pad, satellite disk, scanner or the like. These and other
input devices are often connected to the processing unit 21
through a serial port interface 46 that is coupled to the
system bus, but may be connected by other interfaces, such
as a parallel port, game port or universal serial bus (USB).
A monitor 47 or other type of display device is also
connected to the system bus 23 via an interface, such as a
video adapter 48. In addition to the monitor 47, personal
computers typically include other peripheral output devices
(not shoWn), such as speakers and printers. The exemplary
system of FIG. 1 also includes a host adapter 55, Small
Computer System Interface (SCSI) bus 56, and an external
storage device 62 connected to the SCSI bus 56.

[0026] The personal computer 20 may operate in a net
Worked environment using logical connections to one or
more remote computers, such as a remote computer 49. The
remote computer 49 may be another personal computer, a
server, a router, a netWork PC, a peer device or other
common netWork node, and typically includes many or all of
the elements described above relative to the personal com
puter 20, although only a memory storage device 50 has
been illustrated in FIG. 1. The logical connections depicted
in FIG. 1 include a local area netWork (LAN) 51 and a Wide
area netWork 52. Such netWorking environments are
commonplace in of?ces, enterprise Wide computer net
Works, intranets and the Internet.

[0027] When used in a LAN netWorking environment, the
personal computer 20 is connected to the LAN 51 through
a netWork interface or adapter 53. When used in a WAN
netWorking environment, the personal computer 20 typically
includes a modem 54 or other means for establishing com
munications over the Wide area netWork 52, such as the
Internet. The modem 54, Which may be internal or external,
is connected to the system bus 23 via the serial port interface
46. In a netWorked environment, program modules depicted
relative to the personal computer 20, or portions thereof,
may be stored in the remote memory storage device. It Will
be appreciated that the netWork connections shoWn are
exemplary and other means of establishing a communica
tions link betWeen the computers may be used. Moreover,
While it is envisioned that numerous embodiments of the
present invention are particularly Well-suited for computer
iZed systems, nothing in this document is intended to limit
the invention to such embodiments.

Virtual Machines

[0028] From a conceptual perspective, computer systems
generally comprise one or more layers of softWare running
on a foundational layer of hardWare. This layering is done
for reasons of abstraction. By de?ning the interface for a
given layer of softWare, that layer can be implemented
differently by other layers above it. In a Well-designed
computer system, each layer only knoWs about (and only
relies upon) the immediate layer beneath it. This alloWs a
layer or a “stack” (multiple adjoining layers) to be replaced
Without negatively impacting the layers above said layer or
stack. For example, softWare applications (upper layers)
typically rely on loWer levels of the operating system (loWer
layers) to Write ?les to some form of permanent storage, and
these applications do not need to understand the difference
betWeen Writing data to a ?oppy disk, a hard drive, or a
netWork folder. If this loWer layer is replaced With neW
operating system components for Writing ?les, the operation
of the upper layer softWare applications remains unaffected.

US 2006/0005190 A1

[0029] The ?exibility of layered software allows a virtual
machine (VM) to present a virtual hardware layer that is in
fact another software layer. In this way, a VM can create the
illusion for the software layers above it that said software
layers are running on their own private computer system,
and thus VMs can allow multiple “guest systems” to run
concurrently on a single “host system.”

[0030] FIG. 2 is a diagram representing the logical lay
ering of the hardware and software architecture for an
emulated operating environment in a computer system. An
emulation program 94 runs on a host operating system
and/or hardware architecture 92. Emulation program 94
emulates a guest hardware architecture 96 and a guest
operating system 98. Software application 100 in turn runs
on guest operating system 98. In the emulated operating
environment of FIG. 2, because of the operation of emula
tion program 94, software application 100 can run on the
computer system 90 even though software application 100 is
designed to run on an operating system that is generally
incompatible with the host operating system and hardware
architecture 92.

[0031] FIG. 3A illustrates a virtualiZed computing system
comprising a host operating system software layer 104
running directly above physical computer hardware 102, and
the host operating system (host OS) 104 virtualiZes all the
resources of the machine by eXposing interfaces that are the
same as the hardware the host OS is virtualiZing (which
enables the host OS to go unnoticed by operating system
layers running above it).

[0032] Alternately, a virtual machine monitor, or VMM,
software layer 104‘ may be running in place of or alongside
a host OS 104“, the latter option being illustrated in FIG.
3B. For simplicity, all discussion hereinafter (speci?cally
regarding the host OS 104) shall be directed to the embodi
ment illustrated in FIG. 3A; however, every aspect of such
discussion shall equally apply to the embodiment of FIG.
3B wherein the VMM 104‘ of FIG. 3B essentially replaces,
on a functional level, the role of the host OS 104 of FIG. 3A
described herein below.

[0033] In regard to FIG. 3, it is important to note that VM
A 108 and VM B 110 are virtualiZed computer hardware
representations that eXist only as software constructions and
which are made possible due to the presence of specialiZed
software code that not only presents VM A 108 and VM B
110 to Guest OS A 112 and Guest OS B 114 respectively, but
which also performs all of the software steps necessary for
Guest OS A 112 and Guest OS B 114 to indirectly interact
with the real physical computer hardware 102. This com
plete functionality can generally be referred to as a virtual
machine monitor (VMM) (shown only in FIG. 3B) where,
for certain embodiments (such as the one illustrated in FIG.
3A), the VMM comprises part of the host operating system
104. However, in other embodiments (not shown) the VMM
may be an application running above the host operating
system 104 and interacting with the computer hardware only
through said host operating system 104. In yet other embodi
ments (such as shown in FIG. 3B), the VMM may comprise
a partially independent software system that on some levels
interacts indirectly with the computer hardware 102 via the
host operating system 104 but on other levels the VMM
interacts directly with the computer hardware 102 (similar to
the way the host operating system interacts directly with the

Jan. 5, 2006

computer hardware). And in yet other embodiments (similar
to that shown in FIG. 3B), the VMM may comprise a fully
independent software system that on all levels interacts
directly with the computer hardware 102 (similar to the way
the host operating system interacts directly with the com
puter hardware) without utiliZing the host operating system
104 (although still interacting with said host operating
system 104 insofar as coordinating use of said computer
hardware 102 and avoiding con?icts and the like).

[0034] All of these variations for implementing the VMM
are anticipated to form alternative embodiments of the
present invention as described herein, and nothing herein
should be interpreted as limiting the invention to any par
ticular VMM con?guration. In addition, any reference to
interaction between applications 116, 118, and 120 via VM
A 108 and/or VM B 110 respectively (presumably in a
hardware emulation scenario) should be interpreted to be in
fact an interaction between the applications 116, 118, and
120 and a VMM. Likewise, any reference to interaction
between applications VM A 108 and/or VM B 110 with the
host operating system 104 and/or the computer hardware
102 (presumably to execute computer instructions directly
or indirectly on the computer hardware 102) should be
interpreted to be in fact an interaction between the VMM
and the host operating system 104 or the computer hardware
102 as appropriate.

[0035] Referring again to FIG. 3A, above the host OS 104
(or VMM 104‘) are two virtual machine (VM) implemen
tations, VM A 108, which may be, for eXample, a virtualiZed
Intel 386 processor, and VM B 110, which may be, for
eXample, a virtualiZed version of one of the Motorola 680><0
family of processors. Above each VM A 108 and 110 are
guest operating systems (guest OSs) A 112 and B 114
respectively. Above guest OS A 112 are running two appli
cations, application A1116 and application A2118, and
above guest OS B 114 is application B1120.

[0036] Historically, virtual machines have been based
upon the illusion that guest OSs (e.g., guest OS A 112) are
running on dedicated hardware, when in fact they are
sharing the hardware with other guest OSs (e.g., guest OS B
114). Host OS 104 is responsible for maintaining this
illusion. The present invention relaXes this illusion and
allows the guest OSs to ascertain whether they are running
in a VM, and, subsequently, to alter their behavior, based on
this realiZation. Behavior modi?cations are described that
will increase the efficiency of guest OSs operating in a VM
environment.

Operating in a VM Environment

[0037] FIG. 4 illustrates a virtualiZed computing system
similar to that shown in FIG. 3A, but in FIG. 4, a VM-aware
guest OS A 132 and a VM-aware guest OS B 134 have
replaced guest OS A 112 and guest OS B 114, respectively.
VM-aware guest OS A 132 and VM-aware guest OS B 134
are operating systems that are able to ascertain whether they
are operating in a virtual machine environment and, if so, are
able to modify their behavior to operate more efficiently.

[0038] The operation of VM-aware guest OS A 132 and
VM-aware guest OS B 134 of FIG. 4 is described in
reference to FIG. 5, which is a ?owchart that illustrates a
method 140 of implementing a VM-aware operating system
with the capability to modify its behavior in order to

US 2006/0005190 A1

improve efficiency in a virtual machine environment. At step
142, the method ?rst comprises starting the VM-aWare
operating system (e.g., VM-aWare guest OS A 132 or
VM-aWare guest OS B 134).

[0039] At step 144, the VM-aWare OS determines Whether
it is operating in a VM environment. This determination is
done by any of a variety of methods, including the use of
synthetic instructions, as described in US. patent applica
tion Ser. No. 10/685,051 ?led on Oct. 14, 2003 and entitled,
“SYSTEMS AND METHODS FOR USING SYNTHETIC
INSTRUCTIONS IN AVIRTUAL MACHINE” (hereinafter
the ’051 patent application). The ’051 patent application
describes a method for an operating system to determine
Whether it is running on a virtualiZed processor or running
directly on an X86 processor, by executing a synthetic
instruction (e.g., VMCPUID) for returning a value repre
senting an identity for the central processing unit. If a value
is returned, the guest OS concludes that the operating system
is running on a virtualiZed processor; if an exception occurs
in response to the synthetic instruction, the guest OS con
cludes that the operating system is running directly on an
X86 processor. Another method for determining Whether the
guest OS is running in a VM environment include running
a series of tests threads and comparing performance of the
current environment to historical results. In any event, if the
VM-aWare OS determines that it is not operating in a VM
environment, method 140 proceeds to step 146. Alterna
tively, if the VM-aWare OS determines that it is operating in
a VM environment, method 140 proceeds to step 150.

[0040] At step 146, the VM-aWare OS operates in its
“traditional” manner, because it is operating on dedicated
hardWare and is not in a VM environment. At step 148, the
VM-aWare operating system determines Whether a “shut
doWn” command has been received. If a “shut doWn”
command is received, the VM-aWare OS shuts doWn and
method 130 ends. If no “shut doWn” command has been
received, the VM-aWare OS continues to operate in the
“traditional” manner, as described in step 146.

[0041] At step 150, the VM-aWare OS modi?es its behav
ior in order to operate more ef?ciently in a VM environment.
Examples of behavior modi?cations include, but are not
limited to, 1) thread scheduling; 2) using bimodal devices to
increase ef?ciency of devices, as described in US. Patent
Application No. 1-734,450, ?led on Dec. 12, 2003, entitled
“SYSTEMS AND METHODS FOR BIMODAL DEVICE
VIRTUALIZATION OF ACTUAL AND IDEALIZED
HARDWARE-BASED DEVICES” (hereinafter the ’450
patent application); and 3) utiliZing synthetic instructions (as
in the ’051 patent application) that contain the execution
priorities to host OS 104.

[0042] At step 152, the VM-aWare OS determines Whether
a “shut doWn” command has been received. If a “shut doWn”
command is received, the VM-aWare OS shuts doWn and
method 130 ends. If no “shut doWn” command has been
received, the VM-aWare OS continues to operate in its
modi?ed, high-ef?ciency mode, as described in step 150.

Scheduling Example

[0043] In operating systems, a scheduler assigns proces
sors to an execution context or thread. The scheduler
revieWs all ready threads and then schedules the threads for
processing. If there is no Work to be done, the scheduler

Jan. 5, 2006

loops While looking for Work for a period of time before
?nally entering a busy-Wait Zone. When operating systems
are not operating in a virtual machine, this behavior is not
detrimental to performance. HoWever, in a virtual machine
environment, this behavior is detrimental to other guest
operating systems that have Work ready, but for Which the
processor is occupied. This looping and busy-Waiting time
contributes to the high-overhead level associated With run
ning operating systems in a virtual machine environment.

[0044] The example shoWn in FIG. 6 is an exemplary
system and method for behavior modi?cation. HoWever, the
present invention is not limited to thread scheduling behav
ior modi?cations.

[0045] FIG. 6 illustrates a virtualiZed computing system
comprising a shared communication area A 162 arranged
betWeen host OS 104 and VM-aWare guest OS A 132.
Similarly, a shared communication area B 164 is arranged
betWeen host OS 104 and VM-aWare guest OS B 134. This
virtualiZed computing system provides a Way for guest OSs
to operate more ef?ciently. In a scheduling example, the
virtualiZed computing system described in FIG. 6 includes
a Way for a guest OS to provide additional thread informa
tion (such as information regarding the priority of thread and
expected duration of time for the thread to run). When this
information is combined With information from other guest
OSs, the host OS has a much clearer picture of all of the
demand for resources Within the system and is, therefore,
able to make decisions that Will greatly improve the ef?
ciency of the system.

[0046] Shared communication areas A 162 and B 164 are
mechanisms Which provide VM-aWare guest OS A 132 and
VM-aWare guest OS B 134 an efficient Way to transfer
information to host OS 104 Without passing control to host
OS 104. Passing control to host OS 104 is time consuming,
therefore detrimental to overall system performance, and
therefore to be avoided, if possible. In one example, shared
communication area A 162 and shared communication area
B 164 are embodied With shared memory space. In another
example, shared communication area A 162 and shared
communication area B 164 are embodied by a direct com
munications link betWeen VM-aWare guest OS A 132 and
VM-aWare guest OS B 134, respectively.

[0047] VM-aWare guest OS A 132 and VM-aWare guest
OS B 134 further contain a VM-aWare scheduler A 166 and
a VM-aWare scheduler B 168, respectively. VM-aWare
schedulers A 166 and B 168 operate on a set of ready threads
that have execution properties (such as priority, deadline,
and reserve (a portion of processor assigned to a thread). The
execution properties are placed into shared communication
areas A 162 and B 164.

[0048] The virtualiZed computing system described in
FIG. 6 further includes a host scheduler 172 Within host OS
104. Host scheduler 172 makes scheduling decisions that are
more ef?cient, based on tWo neW features of the system:
?rst, VM-aWare guest OS A 132 and VM-aWare guest OS B
134 are aWare that they are operating in a VM environment
and are able to send execution priorities to host scheduler
172 to enable more-efficient execution of all threads from a
plurality of VM-aWare guest OSs; second, shared commu
nication areas A 162 and B 164 provide an efficient Way to
send information to host OS 104 Without passing control to
host OS 104.

US 2006/0005190 A1

[0049] Host scheduler 172 assigns a plurality of virtual
processors 170A-170N to process the threads, according to
the execution priorities placed into shared communication
areas A 162 and B 164. Host scheduler 172 revieWs the
execution priorities for all VM-aWare guest OSs (e.g., VM
aWare guest OS A 132 and VM-aWare guest OS B 134),
creates a composite run-list based on the priorities from all
VM-aWare guests OSs, and assigns virtual processors 170 to
process the threads accordingly.

[0050] The operation of the VM-aWare guest OSs of FIG.
6 is described in reference to FIG. 7, Which is a ?oWchart
that illustrates an exemplary method 180 of scheduling
threads in an operating system in accordance With the
invention. At step 182, the method starts With the VM-aWare
guest OS A 132 determining Whether it is operating in a VM
environment. This determination is done by any of a variety
of methods including but not limited to the use of synthetic
instructions as described in the ’051 application (described
above). If yes, method 180 proceeds to step 192; if no,
method 180 proceeds to step 184.

[0051] At step 184—Which is a default operating mode for
an operating system on dedicated hardWare-VM-aWare
guest OS A 132 processes a thread. At step 186, VM-aWare
guest OS A 132 determines Whether more threads are ready
to be processed. If yes, method 180 returns to step 184; if
not, method 180 proceeds to step 188. At step 188, VM
aWare guest OS A 132 determines Whether a “shut doWn”
command has been received; if so, VM-aWare guest OS A
132 shuts doWn and method 180 ends; if no “shut doWn”
command has been received, method 180 proceeds to step
190. At step 190, VM-aWare guest OS A 132 enters a
busy-Wait status While it Waits for more threads to be
processed and, after a speci?ed amount of time, method 180
returns to step 186 for the guest OS A 132 to check for more
threads to process.

[0052] At step 192, VM-aWare guest OS A 132—Which is
operating noW operating in an enhanced “VM-aWare”
mode—starts by processing a thread and then, at step 194,
VM-aWare guest OS A132 determines Whether more threads
are ready to be processed. If yes, method 180 returns to step
192 for further processing; if not, method 180 proceeds to
step 195. At step 195, guest OS A 132 determines Whether
a “shut doWn” command has been received and, if so, guest
OS A shuts doWn and method 180 ends; if not, then at step
196, VM-aWare guest OS A 132 indicates to host OS 104 (or,
for certain alternative embodiments, to VMM 104‘) that
guest OS A 132 currently has no Work to do (that is, no
threads to process). In one example, this indication is sent by
VM-aWare guest OS A 132 via shared communications area
A 162 as described above. In another example, this indica
tion is performed by VM-aWare guest OS A 132 sending a
synthetic instruction to host OS 104 (Which is programmed
to understand said synthetic instruction, of course) and then,
at step 198, host OS 104 determines Whether Work from
other VMs is ready to be processed.

[0053] If VM-aWare guest OS A 132 indicates to host OS
104 in step 196 that it does not have any Work (via shared
communications area B 132 or via a synthetic instruction,
for example), host OS 104 determines Whether there is a
need for processor resources elseWhere and, if not, then host
OS 104 alloWs guest OS A 132 to keep receiving processor
resources Which essentially enables guest OS A 132 to

Jan. 5, 2006

continue processing even though guest OS A 132 has no
Work to do at present and, thus, guest OS A 132 Will enter
a busy-Wait loop at step 199 before returning to step 194 to
see if there are more threads to execute. On the other hand,
if host OS 104 determines that there is a need for processor
resources elseWhere, then host OS 104, at stet 200, takes the
processor resources for guest OS A 132 and temporarily
gives them to another process running on host OS A 104
(such as another VM and guest operating system, e.g., guest
OS B 134) before given them back to host OS A 104,
effectively suspending guest OS A 132 until host OS 104
provides it With processor resources once again and then, at
that time, guest OS A optionally continues to a busy-Wait
state (Which is skipped for certain alternative embodiments)
before proceeding back to step 194.

CONCLUSION

[0054] The various systems, methods, and techniques
described herein may be implemented With hardWare or
softWare or, Where appropriate, With a combination of both.
Thus, the methods and apparatus of the present invention, or
certain aspects or portions thereof, may take the form of
program code (i.e., instructions) embodied in tangible
media, such as ?oppy diskettes, CD-ROMs, hard drives, or
any other machine-readable storage medium, Wherein, When
the program code is loaded into and executed by a machine,
such as a computer, the machine becomes an apparatus for
practicing the invention. In the case of program code execu
tion on programmable computers, the computer Will gener
ally include a processor, a storage medium readable by the
processor (including volatile and non-volatile memory and/
or storage elements), at least one input device, and at least
one output device. One or more programs are preferably
implemented in a high level procedural or object oriented
programming language to communicate With a computer
system. HoWever, the program(s) can be implemented in
assembly or machine language, if desired. In any case, the
language may be a compiled or interpreted language, and
combined With hardWare implementations.

[0055] The methods and apparatus of the present invention
may also be embodied in the form of program code that is
transmitted over some transmission medium, such as over
electrical Wiring or cabling, through ?ber optics, or via any
other form of transmission, Wherein, When the program code
is received and loaded into and executed by a machine, such
as an EPROM, a gate array, a programmable logic device
(PLD), a client computer, a video recorder or the like, the
machine becomes an apparatus for practicing the invention.
When implemented on a general-purpose processor, the
program code combines With the processor to provide a
unique apparatus that operates to perform the indexing
functionality of the present invention.

[0056] While the present invention has been described in
connection With the preferred embodiments of the various
?gures, it is to be understood that other similar embodiments
may be used or modi?cations and additions may be made to
the described embodiment for performing the same function
of the present invention Without deviating there from. For
example, While exemplary embodiments of the invention are
described in the context of digital devices emulating the
functionality of personal computers, one skilled in the art
Will recogniZe that the present invention is not limited to
such digital devices, as described in the present application

US 2006/0005190 A1

may apply to any number of existing or emerging computing
devices or environments, such as a gaming console, hand
held computer, portable computer, etc. Whether Wired or
Wireless, and may be applied to any number of such com
puting devices connected via a communications netWork,
and interacting across the netWork. Furthermore, it should be
emphasiZed that a variety of computer platforms, including
handheld device operating systems and other application
speci?c hardWare/softWare interface systems, are herein
contemplated, especially as the number of Wireless net
Worked devices continues to proliferate. Therefore, the
present invention should not be limited to any single
embodiment, but rather construed in breadth and scope in
accordance With the appended claims.

[0057] Finally, the disclosed embodiments described
herein may be adapted for use in other processor architec
tures, computer-based systems, or system virtualiZations,
and such embodiments are expressly anticipated by the
disclosures made herein and, thus, the present invention
should not be limited to speci?c embodiments described
herein but instead construed most broadly. Likewise, the use
of synthetic instructions for purposes other than processor
virtualiZation are also anticipated by the disclosures made
herein, and any such utiliZation of synthetic instructions in
contexts other than processor virtualiZation should be most
broadly read into the disclosures made herein.

1. Amethod for an operating system to improve ef?ciency
When executing on a virtual machine, said method compris
ing determining if said operating system is executing on a
virtual machine and, if so, said operating system modifying
its execution to operate more ef?ciently on said virtual
machine or, if not, said operating system executing as most
ef?cient for a standard dedicated hardWare environment.

2. The method of claim 1 Wherein said element of said
operating system modifying its execution to operate more
ef?ciently on said virtual machine comprises the utiliZation
of at least one element of thread scheduling.

3. The method of claim 1 Wherein said element of said
operating system modifying its execution to operate more
ef?ciently on said virtual machine comprises the utiliZation
at least one bimodal device.

4. The method of claim 1 Wherein said element of said
operating system modifying its execution to operate more
ef?ciently on said virtual machine comprises the utiliZation
at least one synthetic instruction.

5. The method of claim 1 Wherein said element of said
operating system modifying its execution to operate more
ef?ciently on said virtual machine comprises the utiliZation
of at least one shared communication area betWeen said
operating system (a guest operating system) and a host
operating system to transfer information Without transfer
ring control.

6. The method of claim 1 Wherein said element of said
operating system modifying its execution to operate more
ef?ciently on said virtual machine comprises the utiliZation
of at least one scheduler in the host operating system to more
effectively allocate at least one processor resource.

7. Asystem for an operating system to improve ef?ciency
When executing on a virtual machine, said system compris
ing at least one subsystem for determining if said operating
system is executing on a virtual machine and, if so, said
operating system modifying its execution to operate more

Jan. 5, 2006

ef?ciently on said virtual machine or, if not, said operating
system executing as most ef?cient for a standard dedicated
hardWare environment.

8. The system of claim 7 further comprising at least one
subsystem Whereby said operating system modi?es its
execution to operate more ef?ciently on said virtual machine
by utiliZing at least one element of thread scheduling.

9. The system of claim 7 further comprising at least one
subsystem Whereby said operating system modi?es its
execution to operate more ef?ciently on said virtual machine
by utiliZing at least one bimodal device.

10. The system of claim 7 further comprising at least one
subsystem Whereby said element of said operating system
modi?es its execution to operate more ef?ciently on said
virtual machine by utiliZing at least one synthetic instruc
tion.

11. The system of claim 7 further comprising at least one
subsystem Whereby said element of said operating system
modi?es its execution to operate more ef?ciently on said
virtual machine by utiliZing at least one shared communi
cation area betWeen said operating system (a guest operating
system) and a host operating system to transfer information
Without transferring control.

12. The system of claim 7 further comprising at least one
subsystem Whereby said element of said operating system
modi?es its execution to operate mare ef?ciently on said
virtual machine by utiliZing at least one scheduler in the host
operating system to more effectively allocate at least one
processor resource.

13. A computer-readable medium comprising computer
readable instructions for an operating system to improve
ef?ciency When executing on a virtual machine, said com
puter-readable instructions comprising instructions for
determining if said operating system is executing on a
virtual machine and, if so, said operating system modifying
its execution to operate more ef?ciently on said virtual
machine or, if not, said operating system executing as most
ef?cient for a standard dedicated hardWare environment.

14. The computer-readable instructions of claim 13 fur
ther comprising instructions Whereby said element of said
operating system modi?es its execution to operate more
ef?ciently on said virtual machine by using of at least one
element of thread scheduling.

15. The computer-readable instructions of claim 13 fur
ther comprising instructions Whereby said element of said
operating system modi?es its execution to operate more
ef?ciently on said virtual machine by using at least one
bimodal device.

16. The computer-readable instructions of claim 13 fur
ther comprising instructions Whereby said element of said
operating system modi?es its execution to operate more
ef?ciently on said virtual machine by using at least one
synthetic instruction.

17. The computer-readable instructions of claim 13 fur
ther comprising instructions Whereby said element of said
operating system modi?es its execution to operate more
ef?ciently on said virtual machine by using of at least one
shared communication area betWeen said operating system
(a guest operating system) and a host operating system to
transfer information Without transferring control.

18. The computer-readable instructions of claim 13 fur
ther comprising instructions Whereby said element of said
operating system modi?es its execution to operate more
ef?ciently on said virtual machine by using of at least one

US 2006/0005190 A1

scheduler in the host operating system to more effectively
allocate at least one processor resource.

19. A hardWare control device for an operating system to
improve efficiency When executing on a virtual machine,
said hardWare control device comprising means for deter
mining if said operating system is executing on a virtual
machine and, if so, said operating system modifying its
execution to operate more efficiently on said virtual machine
or, if not, said operating system executing as most efficient
for a standard dedicated hardWare environment.

20. The hardWare control device of claim 19 further
comprising means for said element of said operating system
to modify its execution to operate more efficiently on said
virtual machine by using at least one element of thread
scheduling.

21. The hardWare control device of claim 19 further
comprising means for said element of said operating system
to modify its execution to operate more efficiently on said
virtual machine by using at least one bimodal device.

Jan. 5, 2006

22. The hardWare control device of claim 19 further
comprising means for said element of said operating system
to modify its execution to operate more efficiently on said
virtual machine by using at least one synthetic instruction.

23. The hardWare control device of claim 19 further
comprising means for said element of said operating system
to modify its execution to operate more efficiently on said
virtual machine by using at least one shared communication
area betWeen said operating system (a guest operating
system) and a host operating system to transfer information
Without transferring control.

24. The hardWare control device of claim 19 further
comprising means for said element of said operating system
to modify its execution to operate more efficiently on said
virtual machine by using of at least one scheduler in the host
operating system to more effectively allocate at least one
processor resource.

