
US 20060010433A1

(12) Patent Application Publication (10) Pub. No.: US 2006/0010433 A1
(19) United States

Neil (43) Pub. Date: Jan. 12, 2006

(54) SYSTEMS AND METHODS FOR PROVIDING
SEAMLESS SOFTWARE COMPATIBILITY
USING VIRTUAL MACHINES

(75) Inventor: Mike Neil, Issaquah, WA (US)

Correspondence Address:
WOODCOCK WASHBURN LLP
(MICROSOFT CORPORATION)
ONE LIBERTY PLACE - 46TH FLOOR

PHILADELPHIA, PA 19103 (US)

(73) Assignee: Microsoft Corporation, Redmond, WA

(21) Appl. No.: 10/883,491

(22) Filed: Jun. 30, 2004

Publication Classi?cation

(51) Int. Cl.
G06F 9/45 (2006.01)
G06F 9/44 (2006.01)

90

(52) US. Cl. 717/138; 717/118

(57) ABSTRACT

Certain embodiments of the present invention are directed to
a system for and method of providing seamless software
compatibility by using virtual machines to provide an
improved, more seamless method of user interaction With

one or more virtual machines (VMs) that are resident on a

host computer system. Several embodiments of the present
invention provide a means in the host environment for

directly invoking one or more guest operating system (OS)
applications or ?les and displaying them in the host envi
ronment, rather than in a separate VM WindoW. Furthermore,
each embodiment of the present invention alloWs the pos
sibility of multiple applications on multiple OSs (i.e., legacy
or modem OSs), respectively, to run simultaneously and
With the appearance of running seamlessly in the host
environment.

100
Software J

Application

A

V

98
Guest Operating /

System

V

96
Guest Hardware /

Architecture

V

_ 94

Emulatlon _/
Program

A

V

Host Operating 92
System and
Hardware

Architecture

Patent Application Publication Jan. 12, 2006 Sheet 2 0f 12 US 2006/0010433 A1

09.

N .5 2 302503 EmBEmI ucm 892w 9:930 “we: 1 Ewhmoi cozmiEm > 1 2 Bow: 5:‘ 2956: “$30 4 829$ 95930 626

US 2006/0010433 A1

9956: ESQEOQ E226 95930 501 m 2.622 E25 < 2282 R2? m m0 3630 < .wO uwmaw

Patent Application Publication Jan. 12, 2006 Sheet 3 0f 12

ON?

00
\

"

Patent Application Publication Jan. 12, 2006 Sheet 4 0f 12 US 2006/0010433 A1

mm .mm ohmBEmI ESQEOQ

E2w>w @5930 Go:

6:82 2282 @ES

m wO wwmzw

o: v: ow?

J w? J .2:

< 222% 525 J

2:

< m0 626 J

N:

N< %< 2 Q?

J J m: w:

Patent Application Publication Jan. 12, 2006 Sheet 5 0f 12 US 2006/0010433 A1

3 .mm

on? 5m

222 “$30)
,

v2 K 285;
aq<

/ www am
3:22 “two:

626

u U] 8F 52

\ \ r qoiwmo

w?zovsg \ 60:
$620 “$50 mm? :02

qoiwmc 6on0

N8 285; £52m no:

Patent Application Publication Jan. 12, 2006 Sheet 6 0f 12 US 2006/0010433 A1

m; .E

/ vmw Em
2.62 501 N2 6205i :02 Q0230 “$36

D

D] 8? S2 /. qoiwwa HwoI

'/

N8 285; $5.2m #8:

Patent Application Publication Jan. 12, 2006 Sheet 7 0f 12 US 2006/0010433 A1

0w .5

/ wwtmm
3:22 60:

om? Em I
2.22 626 j

_ N2‘

/ AumuoEoiv

:02 aoimmc uwmsw

\ I AumHbEoEv .32‘ / 2on5. >>ouE>> “5,4525 Q94

E

U} 8? 82 / aoimmo

mm? :02 .E:

qoiwmo

“$36 /

NW? 262.; 550 no:

$520 $96

Patent Application Publication Jan. 12, 2006 Sheet 9 0f 12 US 2006/0010433 A1

@ .mm c9525?‘ 601 $50.53 E296 @5930 “we:

mm? om: wmw #2 mm?

co:mo=QQ< 60:6 35:33 829$ mcEEwQO G25 » 599$ @5930 “we; 5? w2m2cnEEoO 56E cosmo=QQ< >

om?

Patent Application Publication Jan. 12, 2006 Sheet 12 0f 12 US 2006/0010433 A1

m .91 cozmgaqa. 601 35:53 529$ 9:930 60:

cozmo=g< “$30 $653 E986 9:930 #630 » c656 @5980 $2.0 8:253 253

\1 wow

:

\I Now

oow

US 2006/0010433 A1

SYSTEMS AND METHODS FOR PROVIDING
SEAMLESS SOFTWARE COMPATIBILITY USING

VIRTUAL MACHINES

CROSS-REFERENCE

[0001] This application is related by subject matter to the
inventions disclosed in the following commonly assigned
application: US. patent application Ser. No. (not yet
assigned) (Atty. Docket No. MSFT-2988/307366.01), ?led
on even date herewith, entitled “SYSTEMS AND METH
ODS FOR INTEGRATING APPLICATION WINDOWS IN
AVIRTUAL MACHINE ENVIRONMENT,” the entirety of
Which is hereby incorporated by reference herein.

FIELD OF THE INVENTION

[0002] The present invention generally relates to the ?eld
virtual machines (also knoWn as “processor virtualiZation”)
and softWare that executes in a virtual machine environment.
More speci?cally, the present invention is directed to pro
viding seamless execution of a softWare application Written
for a ?rst operating system on a second operating system
using a using virtual machine.

BACKGROUND OF THE INVENTION

[0003] Computers include general purpose central pro
cessing units (CPUs) that are designed to execute a speci?c
set of system instructions. A group of processors that have
similar architecture or design speci?cations may be consid
ered to be members of the same processor family. Examples
of current processor families include the Motorola 680X0
processor family, manufactured by Motorola, Inc. of Phoe
nix, AriZ.; the Intel 80X86 processor family, manufactured
by Intel Corporation of Sunnyvale, Calif.; and the PoWerPC
processor family, Which is manufactured by Motorola, Inc.
and used in computers manufactured by Apple Computer,
Inc. of Cupertino, Calif. Although a group of processors may
be in the same family because of their similar architecture
and design considerations, processors may vary Widely
Within a family according to their clock speed and other
performance parameters (or capabilities).
[0004] Each family of microprocessors executes instruc
tions that are unique to the processor family. The collective
set of instructions that a processor or family of processors
can execute is knoWn as the processor’s instruction set. As
an example, the instruction set used by the Intel 80X86
processor family is incompatible With the instruction set
used by the PoWerPC processor family. The Intel 80X86
instruction set is based on the Complex Instruction Set
Computer (CISC) format. The Motorola PoWerPC instruc
tion set is based on the Reduced Instruction Set Computer
(RISC) format. CISC processors use a large number of
instructions, some of Which can perform rather complicated
functions, but Which require generally many clock cycles to
execute. RISC processors use a smaller number of available
instructions to perform a simpler set of functions that are
executed at a much higher rate.

[0005] The uniqueness of the processor family among
computer systems also typically results in incompatibility
among the other elements of hardWare architecture of the
computer systems. A computer system manufactured With a
processor from the Intel 80X86 processor family Will have
a hardWare architecture that is different from the hardWare

Jan. 12, 2006

architecture of a computer system manufactured With a
processor from the PoWerPC processor family. Because of
the uniqueness of the processor instruction set and a com
puter system’s hardWare architecture, application softWare
programs are typically Written to run on a particular com

puter system running a particular operating system.

[0006] Computer manufacturers Want to maximiZe their
market share by having more rather than feWer applications
run on the microprocessor family associated With the com
puter manufacturers’ product line. To expand the number of
operating systems and application programs that can run on
a computer system, a ?eld of technology has developed in
Which a given computer having one type of CPU, called a
host, Will include an emulator program that alloWs the host
computer to emulate the instructions of an unrelated type of
CPU, called a guest. Thus, the host computer Will execute an
application that Will cause one or more host instructions to
be called in response to a given guest instruction. Thus the
host computer can both run softWare design for its oWn
hardWare architecture and softWare Written for computers
having an unrelated hardWare architecture. As a more spe
ci?c example, a computer system manufactured by Apple
Computer, for example, may run operating systems and
program Written for PC-based computer systems. It may also
be possible to use an emulator program to operate concur
rently on a single CPU multiple incompatible operating
systems. In this arrangement, although each operating sys
tem is incompatible With the other, an emulator program can
host one of the tWo operating systems, alloWing the other
Wise incompatible operating systems to run concurrently on
the same computer system.

[0007] When a guest computer system is emulated on a
host computer system, the guest computer system is said to
be a “virtual machine” as the guest computer system only
exists in the host computer system as a pure softWare
representation of the operation of one speci?c hardWare
architecture. The terms emulator, virtual machine, and pro
cessor emulation are sometimes used interchangeably to
denote the ability to mimic or emulate the hardWare archi
tecture of an entire computer system. As an example, the
Virtual PC softWare created by Connectix Corporation of
San Mateo, Calif. emulates an entire computer that includes
an Intel 80X86 Pentium processor and various motherboard
components and cards. The operation of these components is
emulated in the virtual machine that is being run on the host
machine. An emulator program executing on the operating
system softWare and hardWare architecture of the host
computer, such as a computer system having a PoWerPC
processor, mimics the operation of the entire guest computer
system.

[0008] The emulator program acts as the interchange
betWeen the hardWare architecture of the host machine and
the instructions transmitted by the softWare running Within
the emulated environment. This emulator program may be a
host operating system (OS), Which is an operating system
running directly on the physical computer hardWare. Alter
nately, the emulated environment might also be a virtual
machine monitor (VMM) Which is a softWare layer that runs
directly above the hardWare and Which virtualiZes all the
resources of the machine by exposing interfaces that are the
same as the hardWare the VMM is virtualiZing (Which
enables the VMM to go unnoticed by operating system

US 2006/0010433 A1

layers running above it). A host operating system and a
VMM may run side-by-side on the same physical hardware.

[0009] Typically, Within the host computer system Which
is emulating one or more VMs, there is no direct mechanism
in the host environment, such as an icon on the desktop, to
launch or in some Way interact With applications that are
running on any given VM. Rather, a VM is presented to the
user on the host computer system in a separate WindoW that
displays the desktop of the guest OS in its native environ
ment, Whether it is a legacy or modem OS. Consequently,
the user sees a completely separate desktop (e.g., With a
separate task bar, “My Computer,” Start Menu, etc.) from
that of the host computer system. Using this separate VM
WindoW, the user may navigate Within the guest OS to
launch any VM application Which, When launched, is like
Wise displayed in the same VM WindoW. If the host com
puter system is hosting multiple VMs, the desktop of each
VM Will appear in its oWn separate WindoW. As a result, in
order for the user to interact With each VM, the user must
navigate from one VM WindoW to the next. It is cumbersome
for the user to navigate from the host desktop to one or more
separate VM desktops to invoke host or VM applications
simultaneously, as the user must continuously sWap betWeen
one WindoW and another and must keep track of What
application is running in Which WindoW. What is needed is
a direct mechanism in the host environment for invoking one
or more guest OS applications and displaying them in the
host environment alongside and interspersed With the host
computer system’s applications, rather than in a separate
VM WindoW, and thereby provide the user With an improved,
more seamless method of interacting With one or more VMs
resident on a host computer system.

SUMMARY OF THE INVENTION

[0010] Certain embodiments of the present invention are
directed to a system for and method of providing seamless
softWare compatibility by using virtual machines to provide
an improved, more seamless method of user interaction With
one or more VMs that are resident on a host computer

system. Several embodiments of the present invention pro
vide a means in the host environment for directly invoking
one or more guest OS applications and displaying them in
the host environment, rather than in a separate VM WindoW.
Consequently, the guest operating system desktop is no
longer visible. Instead, the individual guest applications
WindoWs appear alongside and interspersed With the host
computer system’s WindoWs and, potentially, WindoWs from
other virtual machines that are running simultaneously, and
all of the guest operating system functionality is integrated
directly into the host operating system desktop (e. g., desktop
icons and menu items in the Start Menu for launching
applications from the desktop, etc.).

[0011] A ?rst embodiment of the invention comprises a
plurality of application proxies that are visible to the user in
the host environment and an application launch layer resi
dent in the host OS. Each application proxy is associated
With a host or VM application. The function of the appli
cation launch layer is to identify Whether the given appli
cation proxy is launching a host or VM application. The
application launch layer then communicates to either the
host OS or the VMM, respectively, to take the necessary
action to launch the user-selected application. In the case of
a VM application, the application launch layer communi

Jan. 12, 2006

cates to the VMM to launch a VM With its associated guest
OS, Which subsequently launches the VM application.

[0012] In an alternative embodiment, the invention com
prises a plurality of application ?les that are visible to the
user in the host environment alongside and interspersed With
the host ?les via a ?le integration layer resident in the host
OS. Each application ?le is associated With a host or VM
application. The function of the ?le integration layer is to
alloW the user to directly interact With either a host or VM
application, for example, to launch the user-selected appli
cation.

[0013] Furthermore, each embodiment of the present
invention alloWs the possibility of multiple applications on
multiple OSes (i.e., legacy or modern OSes), respectively, to
run simultaneously and With the appearance of running
seamlessly in the host environment.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] The foregoing summary, as Well as the folloWing
detailed description of preferred embodiments, is better
understood When read in conjunction With the appended
draWings. For the purpose of illustrating the invention, there
is shoWn in the draWings exemplary constructions of the
invention; hoWever, the invention is not limited to the
speci?c methods and instrumentalities disclosed. In the
draWings:
[0015] FIG. 1 is a block diagram representing a computer
system in Which aspects of the present invention may be
incorporated;
[0016] FIG. 2 illustrates the logical layering of the hard
Ware and softWare architecture for an emulated operating
environment in a computer system;

[0017] FIG. 3A illustrates a virtualiZed computing sys
tem;

[0018] FIG. 3B illustrates an alternative embodiment of a
virtualiZed computing system comprising a virtual machine
monitor running alongside a host operating system;

[0019] FIG. 4A illustrates a host display WindoW shoWing
a conventional Way of visually presenting a guest applica
tion WindoW to a user as a separate WindoW Within host

display WindoW;
[0020] FIG. 4B illustrates a host display WindoW visually
presenting a guest desktop icon and guest application Win
doW to a user Within the host display WindoW as if guest
application WindoW is part of the native OS environment;

[0021] FIG. 4C illustrates a host display WindoW visually
presenting a guest desktop icon and guest application Win
doW to a user Within the host display WindoW as if guest
application WindoW is part of the native OS environment, as
Well as (at the user’s option) the host display WindoW also
displaying a WindoW for the guest operating system and its
active components;

[0022] FIG. 5 is a block diagram that represents portions
of the system of FIG. 3B in a ?rst embodiment of the
invention and further comprises a plurality of application
proxies and an application launch layer;

[0023] FIG. 6 is a ?oWchart that illustrates a method of
providing and using an application proxy for launching a
VM application in a host environment;

US 2006/0010433 A1

[0024] FIG. 7A illustrates host display WindoW showing a
conventional Way of visually presenting a guest ?le tree to
a user in a separate WindoW Within host display WindoW;

[0025] FIG. 7B illustrates host display WindoW visually
presenting a composite ?le tree, Which is the combination of
a host ?le tree and a guest ?le tree, to a user Within host
display WindoW as if guest ?le tree is part of the native OS
environment;
[0026] FIG. 8 is a block diagram that represents portions
of the system of FIG. 3B in a second embodiment of the
invention and further comprises a plurality of application
?les Within an integrated ?le system; and

[0027] FIG. 9 is a ?oWchart that illustrates a method of
providing and using an integrated ?le system for interacting
With a VM application in a host environment.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

[0028] The inventive subject matter is described With
speci?city to meet statutory requirements. HoWever, the
description itself is not intended to limit the scope of this
patent. Rather, the inventor has contemplated that the
claimed subject matter might also be embodied in other
Ways, to include different steps or combinations of steps
similar to the ones described in this document, in conjunc
tion With other present or future technologies. Moreover,
although the term “step” may be used herein to connote
different elements of methods employed, the term should not
be interpreted as implying any particular order among or
betWeen various steps herein disclosed unless and except
When the order of individual steps is explicitly described.

Computer Environment

[0029] Numerous embodiments of the present invention
may execute on a computer. FIG. 1 and the folloWing
discussion is intended to provide a brief general description
of a suitable computing environment in Which the invention
may be implemented. Although not required, the invention
Will be described in the general context of computer execut
able instructions, such as program modules, being executed
by a computer, such as a client Workstation or a server.

Generally, program modules include routines, programs,
objects, components, data structures and the like that per
form particular tasks or implement particular abstract data
types. Moreover, those skilled in the art Will appreciate that
the invention may be practiced With other computer system
con?gurations, including hand held devices, multiprocessor
systems, microprocessor based or programmable consumer
electronics, netWork PCs, minicomputers, mainframe com
puters and the like. The invention may also be practiced in
distributed computing environments Where tasks are per
formed by remote processing devices that are linked through
a communications netWork. In a distributed computing
environment, program modules may be located in both local
and remote memory storage devices.

[0030] As shoWn in FIG. 1, an exemplary general purpose
computing system includes a conventional personal com
puter 20 or the like, including a processing unit 21, a system
memory 22, and a system bus 23 that couples various system
components including the system memory to the processing
unit 21. The system bus 23 may be any of several types of
bus structures including a memory bus or memory control

Jan. 12, 2006

ler, a peripheral bus, and a local bus using any of a variety
of bus architectures. The system memory includes read only
memory (ROM) 24 and random access memory (RAM) 25.
Abasic input/output system 26 (BIOS), containing the basic
routines that help to transfer information betWeen elements
Within the personal computer 20, such as during start up, is
stored in ROM 24. The personal computer 20 may further
include a hard disk drive 27 for reading from and Writing to
a hard disk, not shoWn, a magnetic disk drive 28 for reading
from or Writing to a removable magnetic disk 29, and an
optical disk drive 30 for reading from or Writing to a
removable optical disk 31 such as a CD ROM or other
optical media. The hard disk drive 27, magnetic disk drive
28, and optical disk drive 30 are connected to the system bus
23 by a hard disk drive interface 32, a magnetic disk drive
interface 33, and an optical drive interface 34, respectively.
The drives and their associated computer readable media
provide non volatile storage of computer readable instruc
tions, data structures, program modules and other data for
the personal computer 20. Although the exemplary environ
ment described herein employs a hard disk, a removable
magnetic disk 29 and a removable optical disk 31, it should
be appreciated by those skilled in the art that other types of
computer readable media Which can store data that is
accessible by a computer, such as magnetic cassettes, ?ash
memory cards, digital video disks, Bernoulli cartridges,
random access memories (RAMs), read only memories
(ROMs) and the like may also be used in the exemplary
operating environment.

[0031] A number of program modules may be stored on
the hard disk, magnetic disk 29, optical disk 31, ROM 24 or
RAM 25, including an operating system 35, one or more
application programs 36, other program modules 37 and
program data 38. Auser may enter commands and informa
tion into the personal computer 20 through input devices
such as a keyboard 40 and pointing device 42. Other input
devices (not shoWn) may include a microphone, joystick,
game pad, satellite disk, scanner or the like. These and other
input devices are often connected to the processing unit 21
through a serial port interface 46 that is coupled to the
system bus, but may be connected by other interfaces, such
as a parallel port, game port or universal serial bus (USB).
A monitor 47 or other type of display device is also
connected to the system bus 23 via an interface, such as a
video adapter 48. In addition to the monitor 47, personal
computers typically include other peripheral output devices
(not shoWn), such as speakers and printers. The exemplary
system of FIG. 1 also includes a host adapter 55, Small
Computer System Interface (SCSI) bus 56, and an external
storage device 62 connected to the SCSI bus 56.

[0032] The personal computer 20 may operate in a net
Worked environment using logical connections to one or
more remote computers, such as a remote computer 49. The
remote computer 49 may be another personal computer, a
server, a router, a netWork PC, a peer device or other
common netWork node, and typically includes many or all of
the elements described above relative to the personal com
puter 20, although only a memory storage device 50 has
been illustrated in FIG. 1. The logical connections depicted
in FIG. 1 include a local area netWork (LAN) 51 and a Wide
area netWork 52. Such netWorking environments are
commonplace in of?ces, enterprise Wide computer net
Works, intranets and the Internet.

US 2006/0010433 A1

[0033] When used in a LAN networking environment, the
personal computer 20 is connected to the LAN 51 through
a netWork interface or adapter 53. When used in a WAN
networking environment, the personal computer 20 typically
includes a modem 54 or other means for establishing com
munications over the Wide area netWork 52, such as the
Internet. The modem 54, Which may be internal or external,
is connected to the system bus 23 via the serial port interface
46. In a netWorked environment, program modules depicted
relative to the personal computer 20, or portions thereof,
may be stored in the remote memory storage device. It Will
be appreciated that the netWork connections shoWn are
exemplary and other means of establishing a communica
tions link betWeen the computers may be used. Moreover,
While it is envisioned that numerous embodiments of the
present invention are particularly Well-suited for computer
iZed systems, nothing in this document is intended to limit
the invention to such embodiments.

Virtual Machines (VMs)

[0034] From a conceptual perspective, computer systems
generally comprise one or more layers of softWare running
on a foundational layer of hardWare. This layering is done
for reasons of abstraction. By de?ning the interface for a
given layer of softWare, that layer can be implemented
differently by other layers above it. In a Well-designed
computer system, each layer only knoWs about (and only
relies upon) the immediate layer beneath it. This alloWs a
layer or a “stack” (multiple adjoining layers) to be replaced
Without negatively impacting the layers above said layer or
stack. For example, softWare applications (upper layers)
typically rely on loWer levels of the operating system (loWer
layers) to Write ?les to some form of permanent storage, and
these applications do not need to understand the difference
betWeen Writing data to a ?oppy disk, a hard drive, or a
netWork folder. If this loWer layer is replaced With neW
operating system components for Writing ?les, the operation
of the upper layer softWare applications remains unaffected.

[0035] The ?exibility of layered softWare alloWs a virtual
machine (VM) to present a virtual hardWare layer that is in
fact another softWare layer. In this Way, a VM can create the
illusion for the softWare layers above it that said softWare
layers are running on their oWn private computer system,
and thus VMs can alloW multiple “guest systems” to run
concurrently on a single “host system.”

[0036] FIG. 2 is a diagram representing the logical lay
ering of the hardWare and softWare architecture for an
emulated operating environment in a computer system. An
emulation program 94 runs on a host operating system
and/or hardWare architecture 92. Emulation program 94
emulates a guest hardWare architecture 96 and a guest
operating system 98. SoftWare application 100 in turn runs
on guest operating system 98. In the emulated operating
environment of FIG. 2, because of the operation of emula
tion program 94, softWare application 100 can run on the
computer system 90 even though softWare application 100 is
designed to run on an operating system that is generally
incompatible With the host operating system and hardWare
architecture 92.

[0037] FIG. 3A illustrates a virtualiZed computing system
comprising a host operating system softWare layer 104
running directly above physical computer hardWare 102, and
the host operating system (host OS) 104 virtualiZes all the

Jan. 12, 2006

resources of the machine by exposing interfaces that are the
same as the hardWare the host OS is virtualiZing (Which
enables the host OS to go unnoticed by operating system
layers running above it).

[0038] Alternately, a virtual machine monitor, or VMM,
softWare layer 104‘ may be running in place of or alongside
a host operating system 104“, the latter option being illus
trated in FIG. 3B. For simplicity, all discussion hereinafter
(speci?cally regarding the host operating system 104) shall
be directed to the embodiment illustrated in FIG. 3A;
hoWever, every aspect of such discussion shall equally apply
to the embodiment of FIG. 3B Wherein the VMM 104‘ of
FIG. 3B essentially replaces, on a functional level, the role
of the host operating system 104 of FIG. 3A described
herein beloW.

[0039] Referring again to FIG. 3A, above the host OS 104
(or VMM 104‘) are tWo virtual machine (VM) implemen
tations, VM A 108, Which may be, for example, a virtualiZed
Intel 386 processor, and VM B 110, Which may be, for
example, a virtualiZed version of one of the Motorola 680X0
family of processors. Above each VM 108 and 110 are guest
operating systems (guest OSs) A 112 and B 114 respectively.
Above guest OS A 112 are running tWo applications, appli
cation A1116 and application A2118, and above guest OS B
114 is Application B1120.

Host OS and VM Application Integration

[0040] FIG. 4A illustrates a host display WindoW 122 of
host OS 104“ shoWing a conventional Way of visually
presenting a guest application WindoW to a user as a separate
WindoW Within host display WindoW 122. More speci?cally,
host display WindoW 122 of host OS 104“ displays an
example host menu bar 124 by Which the user may select, for
example, the “Start” menu; an example host desktop icon
126 by Which the user my open, for example, the “My
Computer” WindoW; a guest display WindoW 128, Which
represents the visual display of, for example, guest OS A 112
of VM A 108. Guest display WindoW 128 of guest OS A 112
of VM A 108 further displays an example guest menu bar
130 by Which the user may select, for example, the “Start”
menu of guest OS A 112; an example guest desktop icon 132
by Which the user my open, for example, the “My Com
puter” WindoW of guest OS A 112; and a guest application
WindoW 134, Which is representative of the application
launched via guest desktop icon 132.

[0041] Accordingly, to access VM applications, the user
must be aWare that a VM exists on the host OS, and the user
must manually accesses the VM and its associated programs
and applications via the separate VM display WindoW, such
as illustrated in FIG. 4A.

[0042] In contrast, and as illustrated in FIG. 4B, several
embodiments of the present invention are directed to a host
OS presenting in the host display WindoW 122 a “promoted”
guest desktop icon 132‘ (promoted up from the guest display
WindoW 128) to enable a user to directly execute the
corresponding guest application program in the VM from
the host desktop.

[0043] For certain embodiments, this promoted guest
desktop icon 132‘ is fully integrated in With the arrangement
of existing host desktop icons (e.g., host desktop icon 126),
as shoWn in FIG. 4B; for certain alternative embodiments,
the promoted guest desktop icon 132‘ could also be dis

US 2006/0010433 A1

played in a different manner, such as by grouping all of the
“promoted” icons and appending them the end of the regular
icon display, or perhaps by displaying them on the right side
of the host display WindoW 122 aWay and apart from the host
desktop icons 126.

[0044] In addition, several embodiments of the present
invention are also directed to “promoting” the guest appli
cation WindoW 134‘ into the host display WindoW 122 as if
guest application Was executing in the native OS of host
computer. For certain embodiments, this promoted guest
application WindoW 134‘ has the same relative siZe and same
relative position in the host display WindoW 122 as the guest
application WindoW 134 Would have had in a guest display
WindoW 128, as illustrated in FIG. 4B; for certain alternative
embodiments, the promoted guest application WindoW 134‘
may have a different relative siZe and/or a different relative
position in the host display WindoW 122 as the guest
application WindoW 134 Would have had in a guest display
WindoW 128. Of course, certain alternative embodiments of
the present invention Will incorporate features pertaining to
both a promoted guest desktop icon 132‘ and a promoted
guest application WindoW 134‘ as illustrated in FIG. 4B is
taken as a single instance of one such embodiment.

[0045] Moreover, for certain alternative embodiments of
the present invention, as illustrated in FIG. 4C, Where such
seamless integration is desirable but Where it may not be
desirable for the end-user to be entirely unaWare of the
underlying VM (such as, for example, When the end-user
prefers to see a guest display WindoW Whenever the VM and
guest operating system are executing), the guest display
WindoW 128 and its corresponding components (the guest
menu bar 130, the guest desktop icon 132, and the guest
application WindoW 134) are displayed along With the pro
moted guest desktop icon 132‘ and/or the promoted guest
application WindoW 134‘ as illustrated (Where the promoted
guest application WindoW 134‘ is shoWn as being on top of
the guest display WindoW in this instance). Where the
position of the promoted guest application WindoW 134‘ in
the host display WindoW 122 is related to the position of the
guest application WindoW 134 in the guest display WindoW
128, the movement of the promoted guest application Win
doW 134‘ in the host display WindoW 122 results in a
corresponding movement of the guest application WindoW
134 in the guest display WindoW 128 for certain embodi
ments, and vice versa for certain alternative embodiments,
and both for certain alternative embodiments.

[0046] HoWever, directing our attention once again to the
embodiments of FIG. 4B Where the integration is fully
seamless and the end-user is essentially unaWare of the
virtual machine being utiliZed to execute the program cor
responding to promoted guest desktop icon 132‘ (as such is
visually indistinguishable from any other host desktop icon
126), for these various embodiments an automated compo
nent, illustrated in FIGS. 5 and 6, is provided speci?cally to
ensure that an end-user need not be made aWare that VM
exists. In this Way, a user may launch a legacy application
running on a VM and the visual presentation of that appli
cation is provided to the user in the native OS environment.
For example, guest desktop icon 132 is an icon for Word 97,
Which is a WindoWs 95 application. The user double-clicks
on guest desktop icon 132 to launch Word 97. Subsequently,

Jan. 12, 2006

the automated component (as describe in FIGS. 5 and 6)
takes over Without the user’s aWareness to perform the
folloWing general steps:

[0047] 1. The user selects the Word 97 icon on the host
desktop;

[0048] 2. Host OS 104“ detects that Word 97, Which
executes in WindoWs 95, has been selected;

[0049] 3. Host OS 104“ determines that the native OS
is, for example, WindoWs XP;

[0050] 4. Host OS 104“ loads WindoWs 95 in a VM
Without any display thereof;

[0051] 5. Host OS 104“ loads Word 97 in the WindoWs
95-VM; and

[0052] 6. Host OS 104“ promotes the display for the
Word 97 application from the WindoWs 95-VM envi
ronment to the native OS environment of host OS 104“
and seamlessly displays Word 97 to the user accord
ingly.

[0053] In accordance With a ?rst embodiment of the
invention, FIG. 5 illustrates host OS 104“ of the system of
FIG. 3B that further comprises an application H1135, an
application launch layer 136 and a plurality of application
proxies that provide an automated mechanism for launching
any host or VM application seamlessly in the host environ
ment. In this example, host OS 104“ comprises an applica
tion H1 proxy 138 for launching application H1135 of host
OS 104“, an application A1 proxy 140 for launching appli
cation A1116 of guest OS A 112, an application A2 proxy
142 for launching application A2118 of guest OS A 112, and
an application B1 proxy 144 for launching application
B1120 of guest OS B 114. As knoWn and understood by
those skilled in the art, a proxy is a softWare mechanism
Which passes a request from one computer entity to another,
in this case, from the host OS to the VM.

[0054] Application H1 proxy 138, application A1 proxy
140, application A2 proxy 142, and application B1 proxy
144 are instantiated, for example, as icons on the desktop or
the startup menu of host OS 104“, and thereby provide to the
user a mechanism for launching any application in the host
environment, regardless of Whether the application exists on
the host OS or a guest OS. In this Way, the use of host and
VM application proxies Within host OS 104“ eliminates the
need for the user to open and navigate separate WindoWs in
the host environment that represent the desktop of each VM
by Which he/she launches any associated guest OS applica
tions. When an application proxy is selected by the user, the
application launch layer 136 provides the mechanism for
identifying Whether the given application proxy is launching
a host or VM application. Application launch layer 136 then
communicates either to host OS 104“ or to VMM 104‘,
respectively, to take the necessary action to launch the
user-selected application.

[0055] As a result, the user is provided a user-friendly,
automated, seamless mechanism betWeen, for example, host
OS 104“ and guest OS A112 and guest OS B 114, Which thus
provides the visual appearance of all guest OS applications
that exist and execute in the host environment. Application
A1116, application A2118, and application B1120 may be
either legacy or modem applications; thus, this embodiment
of the present invention provides a method of visually

US 2006/0010433 A1

integrating an application of a legacy OS (e.g., MS-DOSTM,
Windows 3.XTM, Windows 95 TM, Windows 98”‘, Windows
Me TM, Windows NTTM, and Windows ZOOOTM) within a host
environment, such as Windows XPTM. Furthermore, this
embodiment of the present invention allows the possibility
of multiple applications on multiple OSes, respectively, to
run simultaneously and with the appearance of running in
the host environment.

[0056] The operation of the system of FIG. 5 is described
in reference to FIG. 6, which is a ?owchart that illustrates
a method 150 of providing and using an application proxy in
a host environment for launching a VM application and
visually displaying it in the native host environment. At step
152, the method ?rst comprises the installation of an appli
cation proxy for each existing host and VM application. As
a result, an icon on the desktop or startup menu of host OS
104“ is provided to the user as a visual representation in the
host environment of each host or VM application. Conse
quently, the virtual machine’s desktop is no longer visible.
The VM application proxies appear alongside and inter
spersed with the host computer system’s application proxies.
Furthermore, the individual VM application proxies appear
alongside and interspersed with, potentially, application
proxies from other VMs that are running simultaneously.

[0057] At step 154, the user selects a host or VM appli
cation to run by clicking on its associated application icon.
For example, to launch application H1135 of host OS 104“,
the user clicks on the application H1 proxy 138 icon.
Similarly, to launch application A1116 of guest OS A 112,
the user clicks on the application A1 proxy 140 icon.

[0058] At step 156, the selected application proxy com
municates a request to initiate its associated application to
application launch layer 136 of host OS 104“, which sub
sequently determines (at step 158) whether the application is
a host or VM application. At step 160, if at step 158 it is
determined that the request is a VM application, application
launch layer 136 communicates to VMM 104‘ to launch a
VM with its associated guest OS, such as VM A 108 and
guest OS A 112 or VM B 110 and guest OS B 114. At step
162, the guest OS launches the VM application, such as
guest OS A 112 launching application A1116 or guest OS B
114 launching application B1120. The application subse
quently executes and is presented visually to the user as
though the application were running in the host environ
ment, even though it is actually executing on a VM. At step
164, if at step 158 it is determined that the request is a host
application, such as application H1 proxy 138 requesting to
launch application H1135, application launch layer 136
communicates to host OS 104“ to launch the host applica
tion.

Host OS and VM File Integration

[0059] In addition to visually integrating applications run
ning in a guest operating system on a virtual machine into
the host operating system display environment, a similar
approach to integration would also be advantageous in
regard to ?les and other data structures that exist in the
virtual machine, e.g., ?les that exist on a virtual hard drive
(VHD) for a given virtual machine (VM). As known and
appreciated by those of skill in the art, the ?les of a VHD are
logical constructs that are typically stored as a single ?le (or,
in some cases, as a series of interrelated ?les that together
comprise the VHD) in some sort of persistent data store (i.e.,

Jan. 12, 2006

the hard drive of the host computer), which is discussed
more fully herein below. Consequently, while these indi
vidual data ?les stored in the VHD are accessible to the VM,
they are not directly accessible to the host operating system
(although the single ?le on the physical hard drive that
corresponds to the entire VHD volume may be accessible)
but must be accessed through the VM. Similarly, the VM,
which provides an environment to a guest OS such that the
guest OS is largely unaware that it is executing on a VM and
not on physical hardware, is unaware of the ?les that exist
for the host operating system, and thus executing a VM
application to, say, edit a host operating system ?le, is
somewhat problematic in the existing art. Therefore, on the
one hand it would be advantageous if ?les on a VHD were
seamlessly displayed and accessible to the user through the
host operating system, and it would also be advantageous if
the ?les on the host operating system were seamlessly
accessible to applications executing in the virtual machine.
Several embodiments of the present invention are directed to
provided such solutions.

[0060] FIG. 7A illustrates host display window 122 of
host OS 104“ showing a conventional way of visually
presenting a guest ?le tree to a user in a separate window
within host display window 122. More speci?cally, host
display window 122 of host OS 104“ displays the example
host menu bar 124 by which the user may select, for
example, the “Start” menu; the example host desktop icon
126 by which the user my open, for example, the “My
Computer” window; an example host ?le tree 166 that may
be displayed within the host “My Computer” window (not
shown); and guest display window 128, which represents the
visual display of, for example, guest OS A 112 of VM A 108.
Host ?le tree 166 further includes, for example, a host folder
containing various host application ?les, such as a host ?le
A, B, and C.

[0061] Guest display window 128 of guest OS A 112 of
VM A 108 further displays an example guest ?le tree 168
that may be displayed within the guest “My Computer”
window (not shown) of guest display window 128. Guest ?le
tree 168 further includes, for example, a guest folder con
taining various guest application ?les, such as a guest ?les
1, 2, and 3. Accordingly, the user must be aware that a VM
exists, the user then manually accesses the VM and its
associated ?les in a separate VM display window, such as
illustrated in FIG. 7A.

[0062] In contrast, and representative of several embodi
ments of the present invention, FIG. 7B illustrates host
display window 122 of host OS visually presenting a com
posite ?le tree 170, which is the combination of host ?le tree
166 and guest ?le tree 168, to a user within host display
window 122 as if guest ?le tree 168 is part of the native OS
environment of host OS 104“. Accordingly, an automated
component (as describe in FIGS. 8 and 9) is provided such
that the user is not even aware that a VM exists. In this way,
a user may launch a legacy application ?le residing on a VM
and the visual presentation of that application ?le is pro
vided to the user in the native OS environment such that
guest ?les, for example, guest ?les 1, 2, and 3, have the
appearance of residing on the user’s local drive. The auto
mated component for providing composite ?le tree 170 is
described in further detail in reference to FIGS. 8 and 9.

[0063] In regard to certain alternative embodiments of the
present invention, FIG. 8 illustrates portions of the system

US 2006/0010433 A1

of FIG. 3B that further comprise a plurality of emulated
devices, in this instance a plurality of virtual hard drives
(VHDs). As known and understood by those skilled in the
art, a VHD is a virtualiZed device, logically equivalent to a
physical hard drive device, that a virtual machine emulates
for a guest operating system. (As used herein, the terms
“hard disk,”“hard drive,” and “hard disk drive” may be used
interchangeably.) In FIG. 8, VM A 108 comprises VHD X
156 and VHD Y 158 Which, for example, the virtual machine
may emulate for guest OS A112 as hard drive “C1” and hard
drive “Dz” (not shoWn). Likewise, VM B 110 comprises
VHD Z 160 for guest OS B 114 as hard drive “Cz” (not
shoWn) for that operating system.

[0064] In this embodiment, VHD X 156 is implemented as
a single data ?le, a ?le X 176, on a physical hard disk drive
174 of the computer hardWare 102; VHD Y 158 is also
implemented as a single data ?le, a ?le Y 178, on the same
physical hard disk drive 174; and VHD Z 160 is also
implemented as a single data ?le, a ?le Z 180, on the
physical hard disk drive 174. Of course, as Will be under
stood and readily appreciated by those skilled in the art,
these VHD representations may be located in several ?les
and across separate hard drives or separate computer sys
tems, or they can be something other than a ?le (for
example, a table in a database, a database, or a block of
active memory,). Moreover, although for the present
embodiment all three VHDs are in fact ?les maintained by
?le system 172 of host OS 104“, in alternative embodiments,
they may be implemented in other Ways, such as ?les or
other data structures maintained by the VMM 104‘. Never
theless, in the present embodiment, and as illustrated in FIG.
8, VHD X 156, VHD Y 158, and VHD Z 160 are imple
mented through ?le system 172 of host OS 104“ as ?le X
176, ?le Y 178, and ?le Z 180, respectively, on physical hard
disk drive 174 of physical computer hardWare 102.

[0065] In FIG. 8, host OS 104“ further comprises a ?le
integration layer 182 that is a softWare layer that operates
someWhere above ?le system 172 and that further comprises
a plurality of application ?les that provide a mechanism for
interacting With any host or VM application seamlessly in
the host environment. In this example, ?le integration layer
182 of host OS 104“ comprises an application ?le H1184
associated With application H1135 of host OS 104“, an
application ?le A1186 associated With application A1116 of
guest OS A 112, an application ?le A2188 associated With
application A2118 of guest OS A 112, and an application ?le
B1190 associated With application B1120 of guest OS B
114.

[0066] The system of FIG. 8 provides to the user a
mechanism in the host environment for collectively vieWing
all ?les associated With VHDs 156, 158, and 160 and hard
disk drive 174 of computer hardWare 102 in a commingled
fashion, regardless of Whether the ?les associate With the
host or a VM. For example, application ?le H1184, appli
cation ?le A1186, application ?le A2188, and application
?le B1190 are all visible to the user in the “My Computer”
or “Explore” WindoWs of host OS 104“. In this Way, the
accessibility of host and VM application ?les Within ?le
integration layer 182 of host OS 104“ eliminates the need for
the user to open and navigate separate WindoWs in the host
environment that represents the desktop of each VM by
Which he/she interacts With any associated guest OS appli
cations. When an application ?le is selected by the user the

Jan. 12, 2006

?le integration layer 182 provides the mechanism for iden
tifying Whether the given application ?le is associated With
a host or VM application. File integration layer 182 then
communicates to either host OS 104“ or VMM 104‘, respec
tively, to take the necessary action to interact With the
user-selected application.

[0067] As a result, the user is provided a user-friendly,
automated, seamless mechanism betWeen, for example, host
OS 104“, VM A 108, and VM B 110, Which thus provides
the visual appearance of all guest OS application ?les that
exist and execute in the host environment. Application
A1116, application A2118, and application B1120 may be
either legacy or modem applications; thus, this embodiment
of the present invention provides a method of visually
integrating an application of a legacy OS (e.g., MS-DOS,
WindoWs 3.X, WindoWs 95, WindoWs 98, WindoWs Me,
WindoWs NT, and WindoWs 2000) Within a host environ
ment, such as WindoWs XP. Furthermore, this embodiment
of the present invention alloWs the possibility of multiple
applications on multiple OSes, respectively, to run simulta
neously and With the appearance of running in the host
environment.

[0068] The operation of the system of FIG. 8 is described
in reference to FIG. 9, Which is a ?oWchart that illustrates
a method 200 of providing and using an application ?le in
a host environment for accessing a guest ?le tree associated
With a VM and visually displaying it in the native host
environment. At step 202, the method ?rst comprises the
installation of an application ?le for each existing host and
VM application. Consequently, the virtual machine’s desk
top is no longer visible. As a result, the VM application ?les
appear alongside and interspersed With the host computer
system’s application ?les and all are visible and accessible
to the user in the “My Computer” or “Explore” WindoWs of
the host environment of host OS 104“. Furthermore, the
individual VM application ?les appear alongside and inter
spersed With, potentially, application ?les from other VMs
that are running simultaneously. At step 204, the user selects
a host or VM application to interact With, by clicking on its
associated application ?le. For example, to interact With
application H1135 of host OS 104“ the user clicks on the
application ?le H1184. Similarly, to interact With application
A1116 of guest OS A 112 the user clicks on the application
?le A1186.

[0069] At step 206, the selected application ?le commu
nicates a request to interact With its associated application
through ?le integration layer 182 of host OS 104“, Which
subsequently determines (at step 208) Whether the applica
tion is a host or VM application. At step 210, if at step 208
it is determined that the request is a VM application, ?le
integration layer 182 communicates to VMM 104‘ to launch
a VM With its associated guest OS, such as VM A 108 and
guest OS A 112 or VM B 110 and guest OS B 114. At step
212, the guest OS launches the VM application, such as
guest OS A 112 launching application A1116 or guest OS B
114 launching application B1120. The application subse
quently executes and is presented visually to the user as
though the application Were running in the host environ
ment, even though it is actually executing on a VM. At step
214, if at step 208 it is determined that the request is a host
application, such as application ?le H1184 requesting to

