
US008234624B2

(12) United States Patent (10) Patent No.: US 8,234,624 B2
Devins et al. (45) Date of Patent: Jul. 31, 2012

(54) SYSTEM AND METHOD FOR DEVELOPING 2 Isjlmple
- a 5 3.1.1113.

EMBEDDED SOFTWARE IN SITU 6,179,488 B1* 1/2001 Wilson 703/23

6,275,785 B1 8/2001 C ' tal.
(75) Inventors: Robert J. Devins, Essex Junction, VT 6,466,898 B1 10/2002 CELT: e

(US); Nagashyamala R. Dhanwada, 6,691,301 B2 * 2/2004 Bowen 717/114
' 7,051,299 B2 * 5/2006 Chadha et al. . ..

Wappmgers Falls’ NY (Us) 7,159,223 B1* 1/2007 Comeau

. 7,353,156 B2 * 4/2008 D ' t l. ..
(73) Ass1gnee: International Business Machines 7,584,465 B1 * 9/2009 K371125521 ““ “

Corporation, Armonk, NY (US) 8,037,432 B2 * 10/2011 Andreev et a1.
2001/0049594 A1* 12/2001 Klevans

(*) Notice: Subject to any disclaimer, the term ofthis 2003/0204830 A1: 10/2003 Brawn et 91' ~~~~~ ~' ~'
patent is extended Or adjusted under 35 2004/0054976 A1 3/2004 Takahashi et a1. 716/8

U.S.C. 154(1)) by 1589 days. (Commued)

(21) App1.No.: 11/626,967 OTHER PUBLICATIONS
_ System-Level Modeling and Performance evaluation Methodology,

(22) Flled: Jan- 25: 2007 Patricia Sagmeister, Andreas Herkersdorf, RDn455 Mar. 2002 #137,
p. 498.

(65) Prior Publication Data
Primary Examiner * Isaac Tecklu

US 2008/0184193 A1 I 1.31 2008
u ’ (74) Attorney, Agent, or Firm * DoWns Rachlin Martin

(51) Int. Cl. PLLC
G06F 9/44 (2006.01)

(52) US. Cl. 717/106; 717/114; 717/116; 717/121; (57) ABSTRACT
703/ 13; 703/21; 703/22; 703/23; 716/100; A development system for developing neW peripheral soft

716/108; 716/132 Ware code for neW peripheral hardWare that Will be used in a

(58) Field of Classi?cation Search None new integrated System The development System includes a
See application ?le for Complete Search history legacy, or preex1st1ng, 1ntegrated system substant1ally the

same as the neW integrated system. A model of the neW
(56) References Cited peripheral hardWare is made. Each I/O register of the model is

US. PATENT DOCUMENTS

4,306,286 A 12/1981 Cocke et a1.
4,527,249 A 7/1985 Van Brunt
4,862,347 A 8/1989 Rudy
4,985,860 A 1/1991 Vlach
5,081,608 A 1/1992 Tamura et a1.
5,247,651 A 9/1993 Clarisse
5,673,418 A 9/1997 Stonier et al.
5,710,934 A * 1/1998 Bona et a1. 714/724

5,870,588 A * 2/1999 Rompaey et al. 703/13

Development system 200

mapped into memory-mapped I/O space. Development code
corresponding to the neW peripheral software code is
executed on the preexisting hardWare so as to interact With the
model via the memory-mapped I/O space. In one embodi
ment, the model is executed as an embedded model on the
preexisting integrated system. In another embodiment, the
model is executed as a non-embedded model on a hardWare

descriptive language simulator.

21 Claims, 2 Drawing Sheets

INTERRUPT

SoC device H

INTERNAL BUS

interrupt
controller m

Legacy l/O
. Real world l/O

penzzhgral device 222

Physical
memory @

space E

HDL simulator workslalion inler‘iaoe Q

HDL logic simulalor
workstation 204 % Crussover interface E

HDL simulatorlaccelerator E

US 8,234,624 B2
Page 2

US. PATENT DOCUMENTS

2004/0186928 A1*
2004/0199889 A1*
2004/0216093 A1*
2004/0243959 A1*

9/2004 Fukunaga et a1. 710/15
10/2004 Earnshaw et a1. .. 716/6
10/2004 Kawakatsu . 717/136

12/2004 Takemura 716/7

2005/0076314 A1*
2005/0160410 A1*
2006/0294436 A1*
2007/0006150 A9 *

* cited by examiner

4/2005 Matsui et a1. 716/1

7/2005 Narisawa et al. 717/141
12/2006 Sakai 714/39

1/2007 Walmsley 717/120

US. Patent Jul. 31, 2012 Sheet 1 M2 US 8,234,624 B2

Development system 100

SOC device m

CPU L INTERRUPT

NMI 1__Q

:: INTERNAL BUS
< k I I >

r l l ‘

Memory lnterrupt Legacy “0 Real world l/O
controller 1_'I_4 controller1_1§ pergahseral L : device 122

A 1 —

j.
v 5

Physical l
memory m I

MM l/O E
space 2Q i

l\ I

‘I V‘ ;

Modeling environment module 19g

FIG. 1

US. Patent Jul. 31, 2012 Sheet 2 M2 US 8,234,624 B2

Development system 200

50C device A

CPU 21-2 INTERRUPT

NMI E

1: INTERNAL BUS
‘ n‘ k I A i

v v I v

Memory Interrupt Leg?” "0 Real world l/O
controller m controller m pe?phera' ‘ : device 222

A A m 4

l
v :

Physical 1
memory Q 1
MM l/O :'

space E l
A |

i
‘ V Y

HDL simulator workstation interface E
A

HDL logic simulator it
Workstation 204 \\ Crossover interface 2_32

AK

HDL simulator/accelerator E

FIG. 2

US 8,234,624 B2
1

SYSTEM AND METHOD FOR DEVELOPING
EMBEDDED SOFTWARE IN-SITU

FIELD OF THE INVENTION

The present invention generally relates to the ?eld of inte
grated systems. In particular, the present invention is directed
to a system and method for developing embedded softWare
in-situ.

BACKGROUND

Development managers and architects for today’s system
on-a-chip (SoC) designs can choose from a Wide range of
development tools and methodologies to achieve develop
ment goals in the hardWare/softWare co-development space.
As is Well-knoWn, an SoC is a single chip that forms a self
contained system that generally includes one or more micro
controller, microprocessor and/or digital signal processor
cores, one or more memories, one or more input/output (I/O)
devices and softWare for controlling the system, including the
I/O devices. One concern of developers of embedded soft
Ware, such as used in an SoC, is achieving timely access to
target hardWare on Which to run code. This is particularly true
in the case of SoC applications because product time-to
market pressure is high.

Because of this high time-to-market pressure, softWare
developers are forced to develop the software in parallel With
the hardWare that Will make up the ?nal SoC product. This
means that the actual hardWare on Which the software Will run
is not available during development. Consequently, current
state-of-the-art SoC softWare development often relies on
hardWare emulation, or softWare co-simulation to provide a
development environment for the neW softWare code. In emu
lation or co-simulation, the hardWare is mapped onto an emu
lation/co-simulation platform that mimics the behavior of the
entire SoC. Once programmed, the emulation/co-simulation
platform enables both the hardWare and the softWare of the
SoC to be tested and debugged. The main constituents of a
softWare co-simulation platform are models of hardWare
blocks at different levels of abstraction (transaction-level,
cycle-accurate, behavioral to name a feW) Written in industry
standard languages (e. g., SystemC, VHDL, Verilog). The pro
cess of developing embedded softWare on such hardWare
emulation/software co-simulation platforms can be very sloW
compared to the speed of the actual SoC hardWare on Which
the softWare Will eventually run.

For example, booting up complcx codc, such as operating
system code, on an emulator/co-simulation takes an exces
sively long time and is, therefore, not practical. Consequently,
a draWback of this process is that the development code must
be executed on the emulator in small segments. Breaking up
the development code into these small segments is very time
consuming and inef?cient. Additionally, debugging the
development code via simulation softWare does not alloW its
execution at full, or even near full, system operating speeds.

SUMMARY OF THE DISCLOSURE

One embodiment of the present disclosure is directed to a
method of developing neW peripheral code for neW peripheral
hardWare for use With a neW integrated system having ?rst
base operating environment. The method comprises provid
ing a preexisting integrated system having second base oper
ating environment substantially similar to the ?rst base oper
ating environment. Peripheral development code is loaded
into the preexisting integrated system and a model of the neW

20

25

30

35

40

45

50

55

60

65

2
peripheral hardWare is provided. The model is mapped into a
register space Within a memory. Said development code is
executed in the preexisting integrated system so as to cause
the peripheral development code to interact With the model
via the register space.

Another embodiment of the present disclosure is directed
to a system for developing neW peripheral code for use in
conjunction With neW peripheral hardWare having at least one
core register. The system comprises a central processing unit
(CPU) and memory in operative communication With the
CPU and including register space corresponding to the at least
one core register of the neW peripheral hardWare. System
softWare stored in the memory for execution by the CPU so as
to provide an existing operating environment. A model of the
neW peripheral hardWare is mapped to the register space.
Development code, stored in the memory and executable by
the CPU, includes instructions for functionally interacting
With the model via the register space.

Yet another embodiment of the present disclosure is
directed to a method of developing peripheral code for neW
peripheral hardWare, the peripheral hardWare con?gured to
run in a ?rst operating environment. The method includes
providing ?rst development code corresponding to the
peripheral code and providing an embedded model of the neW
peripheral hardWare. The embedded model is mapped to
memory-mapped input/output (MM I/O) space. The ?rst
development code and the embedded model are executed so
that the ?rst development code and the embedded model
interact With each other via the MM I/O space. Second devel
opment code corresponding to the peripheral code and a
non-embedded model of the neW peripheral hardWare are
each provided. The non-embedded model is mapped to the
MM I/O space. The second development code and the non
embedded model are executed so that the second develop
ment code and the non-embedded model interact With each
other via the MM I/O space.

BRIEF DESCRIPTION OF THE DRAWINGS

For the purpose of illustrating the invention, the draWings
shoW aspects of one or more embodiments of the invention.
HoWever, it should be understood that the present invention is
not limited to the precise arrangements and instrumentalities
shoWn in the draWings, Wherein:

FIG. 1 illustrates a functional block diagram of a develop
ment system for performing in-situ modeling in accordance
With a ?rst embodiment of the present invention; and

FIG. 2 illustrates a functional block diagram of a develop
ment system for performing in-situ modeling in accordance
With a second embodiment of the present invention.

DETAILED DESCRIPTION

FIG. 1 illustrates a development system 100 made in accor
dance With a ?rst embodiment of the present invention for
performing in-situ modeling of an integrated system under
development (not shoWn), e. g., a system-on-a-chip (SoC). As
those skilled in the art Will appreciate, the integrated system
under development need not be an SoC, but rather may be any
system that includes a processor and one or more peripherals,
particularly Where the processor and processing environment
of the neW system Will be largely the same as an existing
legacy or processor system and one or more neW peripherals
are being added. Examples of other applications include the
design of neW Unix- and PC-based integrated systems.
At a high level, development system 100 alloWs softWare

developers to use in-situ modeling techniques With existing

US 8,234,624 B2
3

integrated system hardware, e.g., a SoC device 104, similar to
new hardware that will eventually be part of the new inte
grated system under development so as to mimic the function
of the new hardware. More particularly, development system
100 allows the software developers to run new software code
(development code) for the system under development on real
hardware that is very similar to the hardware under develop
ment (e. g., the bulk of the new hardware may be identical to
development hardware, except for one or more new periph
erals (peripheral cores), and in a base software (or operating
system) environment that can be very similar, if not identical,
to the base software environment of the system under devel
opment (e.g., the same operating system may be used in the
system under development and only software that runs on top
of the operating system, e.g., peripheral drivers, input/ output
drivers, etc., (generically called “peripherals” herein) may be
new). As discussed below, development system 100 provides
such a development environment by integrating a modeling
environment software module 108 with SoC device 104.

Turning to development system 100 in more detail, SoC
device 104 may, e.g., be a legacy device or a predecessor to
the new system under development. SoC device 104 may
include, among other things, a central processing unit (CPU)
112 (e. g., a microcontroller, microprocessor or digital signal
processor), a memory controller 114, an interrupt controller
116 and an I/O peripheral 118. As those skilled in the art will
readily appreciate, an SoC device suitable for use as SoC
device 104 may include multiple ones of CPU 112, memory
controller 114, interrupt controller 116 and I/O peripheral
118. Only one of each is shown for convenience. CPU 112
may include a non-maskable interrupt (N MI) 120. I/O periph
eral 118 interacts with a real world I/O device 122 outside of
SoC device 104 to produce the appropriate effect, e.g., sound
in the case of the real world I/O device being an audio speaker.

Development system 100 also includes a physical memory
124 that contains a memory-mapped input/ output (MM I/O)
space 126. CPU 112, memory controller 114, interrupt con
troller 116 and legacy I/O peripheral 118 may communicate
with one another via a connection to a communication bus
INTERNAL BUS) to SoC device 104. The physical instan
tiation of the combination of SoC device 104, real world I/O
device 122 and physical memory 124 to form SoC develop
ment system 100 may be accomplished, for example, via an
SoC, a printed circuit board or other known electronics inte
gration methods.

In the present embodiment, CPU 112 is a microprocessor
capable of executing program instructions and is utiliZed for
managing the overall operation of SoC device 104 and, thus,
development system 100. In this example, memory controller
114 provides an interface between memory 124 and CPU
112, which handles the transfer of data going to and from the
memory. Memory controller 114 manages the memory write/
read protocol, which allows CPU 112 to access memory 124
and, perhaps, other memory (not shown) as well.

In the embodiment of FIG. 1, interrupt controller 116 is an
interrupt handler capable of assigning priorities to incoming
interrupt requests and delivering them to CPU 112 via, e.g.,
an electrical interrupt signal (INTERRUPT) from the inter
rupt controller to the CPU. INTERRUPT signal is a synchro
nous or an asynchronous signal from hardware or software
that provides the mechanism allowing a device to request
service from a processor (e.g., CPU 112). Interrupts are a
commonly used technique for computer multitasking, espe
cially in real-time computing. Hardware interrupts, such as
from legacy I/O peripheral 118, cause CPU 112 to save its
state of execution via a context switch (not shown) and begin
handling the interrupt conditions. Software interrupts, such as

20

25

30

35

40

45

50

55

60

65

4
from modeling environment module 108, are usually imple
mented as instructions in the instruction set that cause a

context switch to the interrupt handler in a manner similar to
a hardware interrupt. By contrast, NMI 120 of CPU 112 is a
special type of interrupt that cannot be ignored by standard
interrupt masking techniques. An NMI is typically used to
signal attention for non-recoverable hardware errors, used for
system debugging and used to handle special cases, such as
system resets.

Legacy I/O peripheral 118 is SoC hardware that interfaces
between CPU 112 and the outside world via real world I/O
device 122. For example, if real world I/O device 122 is an
audio speaker legacy I/O peripheral 118 may include an audio
signal generator. Of course, real world I/O device 122 may be
any existing I/O device other than an audio speaker, such as a
keyboard, mouse, graphics controller and/or printer, among
others, so that legacy I/O peripheral 118 will be the suitable
corresponding respective peripheral for driving the real world
I/O device at issue.

Physical memory 124 may be any machine-readable
medium that is capable of storing information, such as data
and instructions associated with software. An example of a
machine-readable medium is a random access memory
(RAM) device. While memory 124 is shown external to SoC
device 104 in FIG. 1, physical memory 124 may, altema
tively, reside internal to the SoC device as an embedded
memory. In yet other embodiments, memory 124 may include
two or more machine-readable media.

MM I/O space 126 is a portion of physical memory 124 that
is allocated, in the context of development system 100, to the
register space of the new peripheral(s) (not shown) that are
under development and for which new software is being
developed. In one example, MM I/O space 126 may be any
100 byte block within physical memory 124. In the context of
development system 100, MM I/O space 126 mimics the
registers of the peripherals under development. Memory
mapped U0 is a common hardware design methodology in
which peripheral control and status registers are mapped into
memory space rather than I/O space. From the software
developer’s point of view, memory-mapped I/O devices look
very much like the device registers themselves. Their regis
ters can even be accessed via ordinary pointers and data
structures, which greatly simpli?es device driver implemen
tation. In the context of development system 100, modeling
environment module 108 is interfaced to MM I/O space 126.

Modeling environment module 108 is modeling software
that may be embedded in SoC device 104, e.g., within
memory 124 or other memory (not shown) aboard or in com
munication with SoC device 104, and is implemented in any
programming language that is suitable to execute on CPU
112, such as, but not limited to, a high level programming
language (e.g., C/C++ programming language) and/or low
level code, such as assembly language. Modeling environ
ment module 108 provides the model environment code that
performs the modeling tasks that mimic the capability of the
new peripheral(s). Because in the embodiment shown mod
eling environment module 108 resides within the hardware of
development system 100, the simulation operations of the
development system may execute at full or nearly full system
operating speeds. It is noted that the model(s) of the new
peripheral hardware under development can be at different
levels of design abstraction, e.g., transaction-level, cycle
accurate, behavioral, register-transfer level, and written in an
architectural modeling language, such as SystemC or variants
thereof, or a hardware description language, such asVHDL or
Verilog.

US 8,234,624 B2
5

The operation of a development system made in accor
dance With the present invention, such as development system
100 of FIG. 1, is as follows. At least three high-level opera
tions are performed in connection With using such a develop
ment system. These operations are:

1) one or more core registers that corresponds to a neW
peripheral modeled in modeling environment module
108 are mapped into a memory location Within the sys
tem memory of an existing integrated system (e. g., into
MM I/O space 126 of physical memory 124 of develop
ment system 100);

2) development code is stored into memory (e.g., into
physical memory 124) for interacting, via the mapped
I/ O memory location, With the neW peripheral; and

3) development code is executed on the CPU in the existing
softWare operating environment (such as on CPU 112 in
the operating environment of 80C device 104).

More speci?cally in connection With the embodiment of
FIG. 1, neW development code is imported into development
system 100 and is executed by CPU 112 Within the base
softWare operating environment of 80C device 104. In doing
so, the base code that is associated With existing SoC device
104 and the neW system under development and the neW
development code are run Within the real-life environment of
development system 100. One or more registers Within the
neW peripheral(s) modeled in modeling environment module
108 are mapped into physical memory locations (represented
by MM I/O space 126 of physical memory 124) and are
available to the base software and neW development code on
the existing hardWare side of development system 100 and the
modeled neW cores on the modeling environment side of the
development system. The model environment (i.e., modeling
environment module 108) executes as a periodic thread from
the operating system, or as a periodic non-maskable interrupt
(handled by NMI 120) and is, therefore, able to poll for
deposits into the register space of MM I/ O space 126 from the
code under development. The register deposits of MM I/O
space 126 are executed in the model environment code of
modeling environment module 108, and responses are depos
ited into the register(s) of MM I/O space 126 as appropriate.
When an interrupt is to be generated from a modeled periph
eral, proper response values are forced into interrupt control
ler 116 by modeling environment module 108, Which simu
lates an interrupt into the base softWare code and, thus, the
interrupt handler of the neW development code is exercised.

Additionally, When possible, the modeling environment
code of modeling environment module 108 can utiliZe an
existing legacy I/O peripheral (e.g., legacy I/O peripheral
118) to test neW-core I/O functionality. This alloWs applica
tion code to interact With a real World device and, thereby,
enhances the development environment. For example, if the
neW peripheral being modeled is a neW audio signal process
ing core, legacy I/O peripheral 118 is an audio signal genera
tor for driving an audio speaker (real World I/O device 122),
then the legacy audio signal generator may use the output
signal of the modeled audio signal processing core to drive
the speaker to alloW developers to test the functioning and
design of the neW audio signal processing core.
A development system of the present disclosure, such as

development system 100 of FIG. 1, may be utiliZed as fol
loWs. For convenience, the folloWing description is directed
to development system 100. HoWever, those of ordinary skill
in the art Will readily understand hoW to implement a devel
opment system in accordance With the present invention that
differs from SoC device-based development system 100, e.g.,
is a Unix- or PC-based development system, as mentioned
above.

20

25

30

35

40

45

50

55

60

65

6
If base softWare code has not yet been loaded into SoC

device 104, it is loaded into the 80C device along With neW
peripheral development code and modeling environment
module 108, including the modeled neW peripheral(s).As part
of the setup of development system 100, each register of the
modeled peripheral(s) is mapped into physical memory, in
this example MM I/ O space 126, and the peripheral develop
ment code and/or base softWare code is con?gured to recog
niZe such register(s) for alloWing the peripheral development
code to communicate With the modeled peripheral(s).
Once loading of all of the softWare, modeling environment

108 and the peripheral model(s) is complete, the execution of
the base softWare code, the peripheral development code and
the peripheral model(s) Within a physical CPU, such as CPU
112 of 80C device 104, is initiated. When running, and as
mentioned above, in some embodiments modeling environ
ment module 108 may execute via the base softWare environ
ment in one or more periodic threads on CPU 112 of 80C

device 104. In alternative embodiments, the model environ
ment code executes as a periodic non-maskable interrupt
(handled, e.g., by NMI 120 ofCPU 112) via the base softWare
code. At the same time the modeling environment is running,
the neW peripheral development code is running on CPU 112
via the base softWare. As the modeled neW peripheral cores
and neW peripheral development code are running, both the
modeling environment module 108 and the base softWare/
neW peripheral development code poll for deposits into the
corresponding respective register(s) of MM I/ O space 126. In
this manner, the interaction betWeen the neW peripheral
development code and the modeled neW peripheral(s) is
simulated.
More particularly, each register deposit made into MM I/O

space 126 from the neW peripheral development code is
executed upon by the corresponding respective modeled neW
peripheral(s) in modeling environment module 108, and in
response, each corresponding respective neW peripheral
model Will deposit into the register(s) of MM I/O space 126,
as appropriate, the response of that neW peripheral for use by
the corresponding neW peripheral development code. In con
junction With depositing one or more responses in MM I/O
space 126, the corresponding respective ones of the modeled
neW peripheral cores may signal interrupt controller 116 that
the response deposit(s) have been made. Once the interrupt(s)
is/are pending With interrupt controller 116, the interrupt
controller Will provide its typical function of scheduling the
interrupt(s) appropriately and issue one or more INTER
RUPT signals to CPU 112 so as to signal the CPU to execute
the appropriate neW peripheral development code to handle
the interrupt(s). Development system 100 may continue to be
run for as long as needed to test all of the neW peripheral
development code.

Depending on the neW peripherals and corresponding neW
peripheral code under development, existing legacy I/O
peripheral 118 and real World I/O device 122 may be utiliZed
to sample and evaluate the performance of the neW peripheral
development code and the neW peripheral core in the context
of the physical World in Which the neW peripherals and
peripheral code under development Will eventually be used
When utiliZed in a product. By Way of example, if the neW
peripheral development code and the neW peripheral core
implement an improved method of audio data compression
and real-World I/O device 122 is an audio speaker and legacy
I/O peripheral 118 is an audio signal generator, the audio
compression algorithm under development is executed by
SoC device 104 so as to drive the audio signal generator,

US 8,234,624 B2
7

Which in turn drives the audio speaker so as to alloW devel
opers to hear the output generated by the neW peripheral
development code.

FIG. 2 illustrates an alternative development system 200
for performing in-situ logic modeling. Similar to develop
ment system 100 of FIG. 1, development system 200 of FIG.
2 alloWs software developers to use in-situ modeling tech
niques to mimic the function of neW hardWare (peripheral(s))
under development. HoWever, instead of utiliZing an embed
ded modeling environment 108 to emulate the neW peripheral
(s) under development as in development system 100 of FIG.
1, development system 200 of FIG. 2 is con?gured to be
interfaced With a hardWare descriptive language (HDL) logic
simulator Workstation 204, or similar external device, that
provides the model(s) of the neW peripheral(s) that interact
With the neW peripheral development code. Other aspects of
development system 200 may be the same as or similar to the
corresponding respective aspects of development system 100
of FIG. 1.

In one embodiment that is generally similar to develop
ment system 100 of FIG. 1, development system 200 of FIG.
2 includes an SoC device 210 that includes one or more CPUs

212, at least one memory controller 214, at least one interrupt
controller 216 and one or more legacy I/O peripherals 218.
CPU 212 may include an NMI 220. Development system 200
may also include one or more real-World I/O devices 222 and

at least one memory 224. Memory 224 includes an MM I/O
space 226 that contains one or more registers used for com

munications betWeen neW peripheral code under develop
ment on one side of the MM I/O space and the modeled neW

peripheral core(s) on the other side of the MM I/O space. Each
of these elements may be as described relative to 80C devel
opment system 100 of FIG. 1.
HDL logic simulator Workstation 204 may include an HDL

simulator/ accelerator 228. While HDL simulator/accelerator
228 is shoWn as being located in a separate Workstation 204,
in alternative embodiments the HDL simulator/accelerator
may not be Workstation-based. For example, HDL simulator/
accelerator 228 may be incorporated into a physical module
or device board that is interfaced directly to development
system 200. To enable communication betWeen HDL simu
lator/accelerator 228 and development system 200, HDL
logic simulator Workstation 204 may include a crossover
interface 232 and the development system may include a
corresponding respective HDL simulator Workstation inter
face 236. HDL simulator Workstation interface 236 may be,
e.g., program code that alloWs communication betWeen SoC
device 210 and HDL simulator Workstation interface 204.
Similarly, crossover interface 232 may be, e.g., program code
that alloWs communication betWeen the development code
testing environment of 80C device 210 and a HDL simulator,
such as HDL simulator/ accelerator 228. The connection
betWeen HDL simulator Workstation interface 236 and cross
over interface 232 may be any suitable high-speed connec
tion, such as a cable connection, e.g., an Ethernet, USB or
FireWire cable.
HDL simulator/accelerator 228 may be a logic simulator

that alloWs the user to run logic simulation With acceleration.
Example logic simulators/ accelerators include, but are not
limited to, the AWAN simulator by IBM (Armonk, N.Y.) and
the VCS® simulator by Synopsys, Inc. (Mountain VieW,
Calif.). HDL simulators describe the architectural blocks of a
core design and is the traditional approach to designing the
blocks from scratch. HDL simulators typically use hardWare
description language (HDL), Which alloWs designers to Write

20

25

30

35

40

45

50

55

60

65

8
the necessary speci?cations for their hardWare design. The
tWo main HDL languages used today are Verilog and VHDL,
but others may be used.

Like development system 100 of FIG. 1, development sys
tem 200 of FIG. 2 maintains all the softWare code in the legacy
peripherals device (e.g., legacy I/O peripheral 218 in combi
nation With real World I/O 222), but replaces the modeling
environment (modeling environment module 108) With a
connection to a logic simulator (HDL simulator/accelerator
228). The thread that is executed in development system 200
is the interface betWeen the development system 200 and
HDL simulator/accelerator 228, Whereas SoC development
system 100 of FIG. 1 is executing the actual function inside
modeling environment module 108.

In the environment of 80C development system 200, devel
opment code is executed in similar fashion to the in-situ
method of 80C development system 100 of FIG. 1. HoWever,
in the case of 80C development system 200, trapped MM I/O
operations of MM I/ 0 space 226 are transported to HDL logic
simulator/accelerator 228. In doing so, the modeling of neW
hardWare is achieved using HDL-based model execution,
Which is a more accurate representation of the neW hardWare,
as compared With the use of the embedded model execution
method of 80C development system 100 of FIG. 1.

Development systems 100, 200 provide mechanisms to
utiliZe pre-silicon embedded models or HDL-based models,
respectively, Within an existing legacy system (e.g., an SoC
device), in order to accomplish in-situ model execution and a
bridge method to in-situ HDL simulation, respectively. The
softWare/hardWare development process may include the use
of development system 100 only, development system 200
only, or both SoC development systems 100 and 200 in seria
tim. Additionally, legacy (i.e., existing) peripheral hardWare
is used, When possible, to provide pseudo real-World I/O
capability, Which can be very useful to device driver and
application development. Additionally, SoC development
systems 100 and 200 provide the bene?t of executing devel
opment softWare at full-speed or near full-speed, and Within a
familiar debug environment, While providing an extensible
and accurate softWare development platform that helps opti
miZe embedded softWare. These development systems also
alloW the reuse of pre-silicon modeling Within the softWare
development context and, thus, enables a neW Way of per
forming parallel development. The development systems of
the present disclosure also use existing physical peripherals
to generate and mimic real World data streams, Which is
essential to softWare system development and debug. Devel
opment system 200 provides an additional bene?t of trans
parent use of HDL simulation and acceleration techniques by
use of a crossover adapter.

Exemplary embodiments have been disclosed above and
illustrated in the accompanying draWings. It Will be under
stood by those skilled in the art that various changes, omis
sions and additions may be made to that Which is speci?cally
disclosed herein Without departing from the spirit and scope
of the present invention.
What is claimed is:
1. A method of developing neW peripheral code for neW

peripheral hardWare for use With a neW integrated system
having ?rst base operating environment, the method compris
ing:

providing a preexisting integrated system having second
base operating environment substantially similar to said
?rst base operating environment;

loading peripheral development code into said preexisting
integrated system;

providing a model of the neW peripheral hardWare;

US 8,234,624 B2

mapping said model into a register space Within a memory;
and

executing said peripheral development code in said preex
isting integrated system so as to cause said peripheral
development code to interact With said model via said
register space.

2. The method according to claim 1, further comprising:
modeling the neW peripheral hardWare in a modeling envi

ronment so as to create said model; and

executing said model on said preexisting integrated sys
tem.

3. The method according to claim 2, Wherein said periph
eral development code includes instructions for making
deposits to said register space, the step of executing said core
model including polling said register space for said deposits.

4. The method according to claim 2, Wherein said step of
providing said model of the peripheral hardWare includes
selecting a level of design abstraction from a group consisting
of transaction-level, cycle-accurate, behavioral, and register
transfer level, and selecting a modeling language from a
group consisting of architectural modeling languages and
hardWare description languages.

5. The method according to claim 3, Wherein the step of
executing said model on the preexisting integrated system
includes executing said model as a periodic thread from said
second operating environment.

6. The method according to claim 3, Wherein the step of
executing said model on said preexisting integrated system
includes executing said model as a periodic non-maskable
interrupt.

7. The method according to claim 3, Wherein the step of
executing said model includes generating responses to said
deposits and depositing said responses in said register space.

8. The method of claim 2, Wherein the preexisting inte
grated system further includes an interrupt controller and the
step of executing said model includes pushing a response
signal to said interrupt controller.

9. The method of claim 2, Wherein the preexisting inte
grated system further includes a legacy input/output periph
eral and the method further includes driving the legacy input/
output peripheral as a function of said model.

10. The method of claim 1, further comprising:
modeling the neW peripheral hardWare in a register transfer

level simulator; and
interfacing said register transfer level simulator With said

register space.
11. A system for developing neW peripheral code for use in

conjunction With neW peripheral hardWare having at least one
core register, comprising:

a central processing unit (CPU);
memory in operative communication With said CPU and

including register space corresponding to the at least one
core register of the neW peripheral hardWare;

20

25

30

35

40

45

50

system softWare stored in said memory for execution by 55
said CPU so as to provide an existing operating environ

ment;
a model of the neW peripheral hardWare mapped to said

register space; and

10
development code, stored in said memory and executable

by said CPU, that includes instructions for functionally
interacting With said model via said register space.

12. The system of claim 10, Wherein said model of the neW
peripheral hardWare is stored in said memory, said model
executable on said CPU in conjunction With said develop
ment code so as to simulate the neW peripheral hardWare.

13. The system of claim 11, Wherein said development
code includes instructions for making deposits to said register
space and said model includes instructions for polling said
register space for said deposits.

14. The system of claim 12, Wherein said preexisting inte
grated system executes said model as a periodic thread.

15. The system of claim 12, Wherein said preexisting inte
grated system executes said model as a periodic non
maskable interrupt.

16. The system of claim 12, Wherein said model includes
instructions for generating responses to said deposits and for
depositing said responses in said register space.

17. The system according to claim 11, Wherein said preex
isting integrated system further includes an interrupt control
ler and said core model includes instructions for pushing a
response signal to said interrupt controller.

18. The system according to claim 11, Wherein said preex
isting integrated system further includes a legacy input/ output
peripheral and said preexisting integrated system drives said
legacy input/output peripheral as a function of said model.

19. The system according to claim 10, further comprising a
hardWare descriptive language (HDL) simulator containing
an HDL simulation of the neW hardWare core interfaced With
the memory location of the preexisting integrated system.

20. A method of developing peripheral code for neW
peripheral hardWare, the peripheral code con?gured to run in
a ?rst operating environment, comprising:

providing ?rst development code corresponding to the
peripheral code;

providing an embedded model of the neW peripheral hard
Ware;

mapping said embedded model to memory-mapped input/
output (MM l/O) space;

executing said ?rst development code and said embedded
model so that said ?rst development code and said
embedded model interact With each other via said MM
l/O space;

providing second development code corresponding to the
peripheral code;

providing a non-embedded model of the neW peripheral
hardWare;

mapping said non-embedded model to said MM VO space;
and

executing said second development code and said non
embedded model so that said second development code
and said non-embedded model interact With each other
via said MM l/O space.

21. The method according to claim 20, Wherein said ?rst
development code and said second development code corre
spond to the peripheral code at differing stages of develop
ment.

